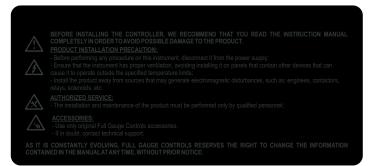


TCP-485 WiFi Log

SERIAL / WI-FI CONVERTER WITH DATALOGGER



10

visory Ethernet Seri. tem Comunic

ANATEL

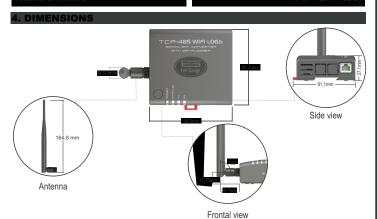
- "This equipment is not entitled to protection against harmful interference and must not cause interference in duly authorized systems."
- "This product is not suitable for use in a domestic environment, as it may cause electromagnetic interference that requires

1 DESCRIPTION

The TCP-485 WiFi Log converter is an interface for communicating Full Gauge Controls controllers with the Sitrad^{®®} management software. The TCP-485 WiFi Log uses a Wi-Fi or Ethernet data network to communicate with the TCP/IP standard. Currently, many companies have wireless routers installed in their facilities, as well as wired infrastructures, making it possible to use these same networks for data traffic between controllers and Sitrad^{®®}, using the TCP-485 WiFi Log converter.

This equipment has internal memory for data storage (datalogger), with the specific purpose of storing controller logs when communication with Sitrad^{ho} is unavailable.

Through the smartphone configuration app or Sitrad^{no}, it is possible to select which instruments will have their logs registered and what is their periodicity. The logs registered in the equipment can be requested by Sitrad^{no} as soon as the communication is reestablished, allowing its insertion in the supervisory database.


2. APPLICATIONS

- Installations in which using the existing Wireless or Ethernet network is paramount;
- Installations that do not have conditions for passing new RS-485 data cabling and already have and Ethernet structure installed.

Note: The TCP-485 WiFi Log converter is designed to work with Full Gauge Controls instrument only.

3. TECHNICAL SPECIFICATIONS

Converter power	External 5.1 Vdc / 2A source
Power supply included with the converter	Input - 100-240 Vac (50/60Hz) Output: 5.1Vdc / 2A
Operating Temperature	0 to 50°C / 32 to 122°F
Operating Humidity	10 to 90% UR (without condensation)
Number of instruments supported per converter on an RS-485 network	32 (without the need for termination)
Wi-Fi antenna	3,8dBi for stable, high-quality connection
Wi-Fi compatibility	IEEE 802.11 b/g/n up to 72,2 Mbps
Wi-Fi frequency	2,4GHz band, channels 1 to 11
Encryption type	WEP, WPA and WPA2
Ethernet (Lan Port)	10 / 100 Mbps
Internal memory	8MB
Product dimensions (without antenna)	93,6 x 37,1 x 91,1 mm (WxHxD)
Antenna dimensions	194,5 x 12,8mm (LxD)

5. INDICATIONS AND KEYS

- 1. POWER LED Indication of power and operating mode
- ${\bf 2.}~{\sf STATUS}~{\sf LED}$ Indication of the connection status and signal strength
- 3. TX LED Indicates transmission over the RS-485 network
- 4. RX LED Indicates reception over the the RS-485 network
- 5. DIN rail lock
- 6. Power connector
- 7. RS-485 network connector
- 8. RJ-45 connector for ethenet cable
- RESET button Switch between operating modes, or restore to factory default settings

CP485WIFILOGV02-06T-17783 -2510

6. INSTALLATION

The **TCP-485 WiFi Log** converter should be preferably installed in places away from noise and electromagnetic interference. It must be powered by the power supply provided with the device, if provided, or a compatible one.

If the operating mode is Wi-Fi Client, the signal quality of the wireless network must be ensured. If the signal is bad or very bad (see item 9), the communication may become unstable and there may be loss of information. For recommendations on how to position the device to avoid interference, see item 13. The RS-485 network must be connected following the recommendations in item 12.

OPERATION MODES

The **TCP-485 WiFi Log** converter has two network interfaces: Ethernet and Wi-Fi, and three modes of operation: Wi-Fi Access Point, Wi-Fi Client and Ethernet Client. Only one operation mode is enabled at a time that is, it is not possible to use the Ethernet and Wi-Fi interfaces at the same time.

7.1 Wi-Fi Access Point Mode:

In this mode, it operates as a Wi-Fi access point that accepts connection from only one client. This is the factory default operating mode, which basically serves to configure the converter on first use, although it can operate in this mode with a Sitrad** client connected to it. The factory default SSID is TCP-485 WIFI Log W-XXXX E-YYYY, with XXXX being the last 4 digits of the Wi-Fi MAC address and YYYY being the last 4 digits of the Fibruret MAC address.

The MAC address of the product's network interfaces can be found on the label located on the front of the

The default password is admin123

7.2 Wi-Fi Client Mode:

In this mode, it operates as a Wi-Fi client and connects to the wireless network provided by the user. Supports dynamic (DHCP) or static IP configuration. It accepts the connection of a Sitrad[®] client and has an IP filter to restrict access within the network.

7.3 Ethernet Client Mode:

In this mode, it operates as an Ethernet client and connects to the wired network provided by the user. Supports dynamic (DHCP) or static IP configuration. It accepts the connection of a Sitrad $^{\text{Pro}}$ client and has an IP filter to restrict access within the network.

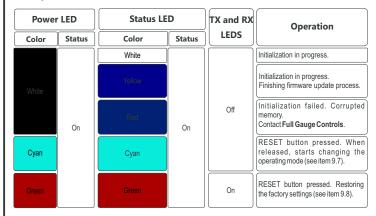
8. LED INDICATIONS

8.1 Wi-Fi Access Point Operation Mode

Power	· LED	Status LED		Event	
Color	Status	Color	Status		
On		Yellow	Blinking	Waiting for a client to connect to the Access Point.	
				Client connected to the Access Point.	
Lilac		Client connected to the Access Point. Connected with Sitrad ^{Pro} .			
	Blinking	linking	Blinking	Client connected to the Access Point. Receiving firmware update.	

8.2 Wi-Fi Client Operation Mode

Power LED		Status LED		Event	
Color	Status	Color	Status	Event	
	On	Blue	Blinking	Scanning for the configured Wi-Fi network. Not connected to Sitrad Pio.	
		Green		Connected to the Wi-Fi network. Excellent signal level. Waiting for Sitrad ^{2nd} client connection.	
		Yellow		Connected to the Wi-Fi network. Good signal level. Waiting for Sitrad ^{Pro} client connection.	
		Lilac		Connected to the Wi-Fi network. Poor signal level. Waiting for Sitrad ^{Pro} client connection.	
		Red		Connected to the Wi-Fi network. Very Poor signal level. Waiting forSitrad ^{Pro} client connection.	
		Green	On	Connected to the Wi-Fi network. Excellent signal level. Connected to Sitrad ^{Pro} .	
Blue		Yellow		Connected to the Wi-Fi network. Good signal level. Connected to Sitrad Pro.	
		Lilac		Connected to the Wi-Fi network. Poor signal level. Connected to Sitrad ^{Pro} .	
		Red		Connected to the Wi-Fi network. Very Poor signal level. Connected to Sitrad ^{®o} .	
	Blinking	Green	Blinking	Connected to the Wi-Fi network. Excellent signal level. Receiving firmware updtate.	
		Yellow		Connected to the Wi-Fi network. Good signal level. Receiving firmware update.	
		Lilac		Connected to the Wi-Fi network. Poor signal level. Receiving firmware update.	
		Red		Connected to the Wi-Fi network. Very Poor signal level. Receiving firmware update.	


8.3 Ethernet Client Mode

Power	LED	Status LED		Event	
Color	Status	Color	Status		
Green	On	Red	Blinking	Ethernet cable disconnected.	
			On	Ethernet cable connected. Negotiating IP.	
		Blue	Blinking	Connected to the ethernet network. Waiting for Sitrad Proclient connection.	
			On	Connected to the ethernet network. Connected with Sitrad	
	Blinking		Blinking	Connected to the ethernet network. Receiving firmware update.	

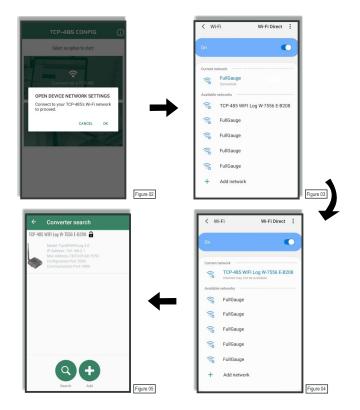
8.4 Errors

Power LED		Status LED		TX and RX	Error
Color	Status	Color	Status	LEDS	
	On	Authentication faile	Not connected to the Wi-Fi network. Authentication failed. Check password, network security settings and signal strength.		
Red		Blue	Blinking	Any	Not connected to the network (Wi-Fi or ethernet). Error obtaining IP (DHCP mode) or invalid IP (Static mode). Check network settings.
		Lilac			Not connected to the network. (Wi-Fi or ethernet). Invalid static IP configuration.
Yellow		Yellow	Any		Contact Full Gauge Controls
Any		Any	Blinking	On	Internal clock error. Datalogger disabled. Waiting for Sitrad ^{Pos} client connection.

8.5 Operations

9. SET UI

The configuration of the TCP-485 WiFi Log converter is made through the **TCP-485 Config** smartphone (Android or iOS) app. The app can be found and dowloaded from the Play Store (Android) or App Store (iOS). The app's home screen is shown in Figure 01.



During configuration, it is advisable to be close to the converter to view the LED indications, as shown by the signal table (item 9). When energized, the **TCP-485 WiFi Log** converter will keep the POWER and STATUS LEDs on in **white** for approximately 7 (seven) seconds, indicating the device's initialization.

After initialization, the color of the POWER LED will indicate the TCP operating mode, and the STATUS LED, the status of its connection, as per item 9.

9.1 Setting up the converter for the first time:

The converter leaves the factory in the Wifi Access Point operating mode. After initialization, the POWER LED will be on in Iilac and the STATUS LED will be flashing in yellow. At this moment, the TCP-485 WiFi Log awaits the connection of a client on its Wireless network created according to the standards specified in item 8.1. Using a smartphone with the TCP-485 Config app, choose the option Connect on a TCP-485. The screen in Figure 02 will appear. Choose the OK option, and the smartphone's Wi-Fi network selection interface will open (Figure 03). Connect to the network created by the converter (Figure 04) and ignore if the smartphone alerts that the closen network does not have access to the internet. Press the back button, and the smartphone will return to the TCP-485 Config app and display the Converter Search screen (Figure 05). Only the converter being configured will appear on this screen, since it is the access point itself. Select the converter and proceed to select the operating mode (items 10.2, 10.3 and 10.4).

9.2 Operation Set Up in Wi-Fi Client mode:

Step 1: Select the converter you desire to configure on the Converter Search screen (Figure 05) and the Basic Settings screen (Figure 06)

Configure the following fields:

- Converter name (up to 30 characters);
 Password (up to 8 characters): access password to change configuration parameters;
- Configuration Port (standard 5005);
- Communication Port (standard 4000); - Network Interface: Wi-Fi or Ethernet.

In the $\mbox{\bf Network Interface}$ field, select the $\mbox{\bf Wi-Fi}$ option.

Basic Settings

CP-485 WIFI Log W-7556 E-B208

Step 2: Address Settings (Figure 07). It is used to configure the datalogger. This screen allows you to change the sampling interval of the datalogger between 15 and 60,000 seconds (default 60 seconds) and to choose the addresses of the instruments to be registered in the datalogger. Addresses 1 through 247 are enabled by selecting their respective checkbox. The maximum amount supported is 32 instruments. The figure shows only addresses 1 to 4. For others, scroll

Step 3: Wi-Fi Network Mode (Figure 08), it is where the operating mode will be chosen between Wi-Fi Client or Wi-Fi Access Point. Select the option Connect in a network.

Step 4: Wi-Fi Network Settings (Figure 09). It is where the network to which the converter must connect is simply configured by touching its name in the list. If the desired network is a hidden network, select the Add network button to configure it manually.

Use DN

Step 5: Configured the following parameters (Figure 10): - Connect to the network (up to 32 characters): SSID of the network

to connect. Fill only if the network is hidden;

Figure 09

Ya

- Connect on the network to connect; IP Mode: Dynamic (DHCP) or Static. In Static mode, you must configure IP Address, Netmask and Gateway;
- DNS server: Primary and Secondary;
- IP-Restricted Access: If it is desidred, only clients with IP within the configured range can connect to the converter.

Step 3: Submitting Settings (Figure 11). Select the Finish button to have the app send the settings to the converter. If successful, the message in Figure 12 will be displayed. The converter will restart and start operating in the selected mode, trying to connect to the configured network.

9.3 Operation Set Up in Wi-Fi Access Point Mode:

Follow the same steps as in item 10.2, except for steps 3 to 5, which are described below.

Setp 3: On the Wi-Fi Network Mode screen, select the Wireless Router option (Figure 13).

Step 4: It is not displayed, go straight to step 5 "Wi-Fi Network Setup"

Step 5: In the Wi-Fi Network Settings screen (Figure 14), configure the Access Point parameters:

- Network name (up to 32 characters);
- Type of authentication: None or WPA2;
- Password (8 to 64 characters): If WPA2 is the selected Authentication type;
- Channel: Automatic or Manual (between 3 and 12);
- IP address: It is the address of the converter on the network itself;
- Net mask;
 - Start and end range: Range of IPs to be assigned to clients connecting to the network.

Figure 14 9.4 Operation Set Up in Ethernet Client Mode

Select the converter according to item 10.1.

Step 1: On the Basic Settings screen, select the Network Interface field and the Ethernet option (Figure 15).

Step 2: In the Ethernet Network Settings screen (Figure 16), configure the parameters of the Ethernet network:

- IP Mode: Dynamic (DHCP) or Static. In Static mode, you must configure IP Address, Netmask and Gateway; - DNS server: Primary and Secondary;
- IP-Restricted Access: If it is desidred, only clients with IP within the configured range can connect to the converter.

Step 3: Submitting Settings (Figure 17). Select the Finish button to have the app send the settings to the converter. If successful, the message in Figure 18 will be displayed. The converter will restart and start operating in the selected mode, trying to connect to the configured network.

9.5 Reconfiguring the converter:

Using a smartphone with the TCP-485 Config app and connected to the same network as the converter, select the Configure TCP-485 option on the current network.

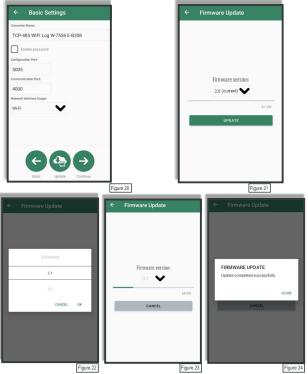
The **Converter Search** screen should display the converters connected to the network, It is possible to set more to have more than one converter on the same network (Figure 19). Select the desired converter and proceed to select the operating mode (items 10.2, 10.3 and 10.4).

Note: If the converter is not connected to the configured network, change the operation mode manually to Wi-Fi Access Point (as per item 10.7) or restore the factory settings (item 10.8).

Figure 19

9.6 Firmware Update:

The TCP-485 WiFi Log firmware update is made through the TCP-485 Config app. For this, the smartphone must have access to the internet, either through the Wi-Fi network to which it is connected, or through its cellular network.


Step 1: On the Basic Settings screen (Figure 20), select the Update button;

Step 2: On the Firmware Update screen (Figure 21), the current firmware version will be displayed. Touch the checkbox and choose the version you want to install (Figure 22). Always try to install the latest version to ensure that your converter is always up to date.

Step 3: Touch the **Update** button and the smartphone will download the firmware and start transmitting it to the converter. A progress bar (Figure 23) will indicate how many blocks were transmitted, and the total number or firmware blocks. The update can be canceled at any time by touching the **Cancel** button.

Step 4: At the end of the update, the message in Figure 24 will be displayed and the converter will restart immediately, turning on the POWER LED in **white**. The STATUS LED will turn **white** and then **yellow**, indicating that the firmware is being update.

Note: When updating firmware, all equipment settings are maintained

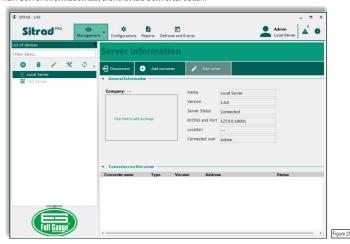
9.7 Changing the configuration mode:

The operating mode can be changed using the RESET button. Just press it for 3 (three) seconds until the POWER and STATUS LEDs are **cyan**. When you release the button, the device will restart and the operation mode will be changed from Client (Wi-Fi or Ethernet) to Access Point or from Access Point to Client (Wi-Fi or Etherne, the last one used).

This operation is useful if it is necessary to reconfigure the converter and it is not possible to access it on the network it is connected, or if it is unable to connect to the configured network.

9.8 Restoring factory settings:

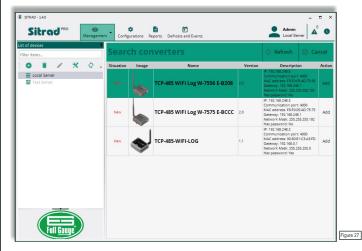
If it is necessary to restore the factory setting of the **TCP-485 WiFi Log**, press the RESET button for 20 (twenty) seconds until all the LEDs are **green**. Upon restart, the converter will return to factory defaults and will operate in Wi-FiAccess Point mode, with default SSID and password.

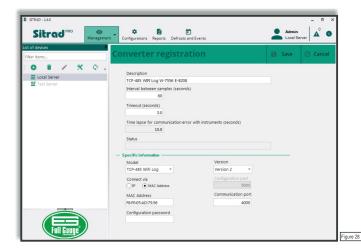

Please Note: This operation will erase all settings previously made in the TCP-485 WiFi Log. converter. The datalogger data is not erased.

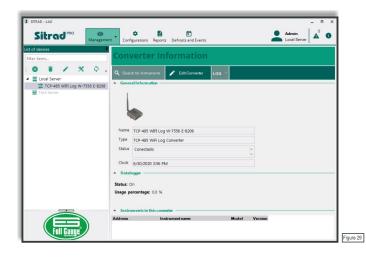
10. INTEGRATION WITH SITRAD

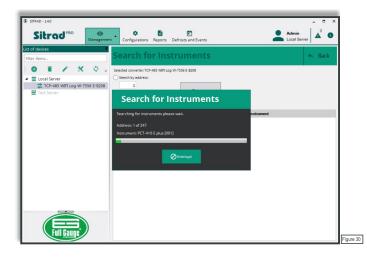
The TCP-485 WiFi Log converter operates in conjunction with the Sitrad Fosupervisory software. The most update version is available at https://www.sitrad.com.br

10.1 Registering the converter in Sitrad[™]

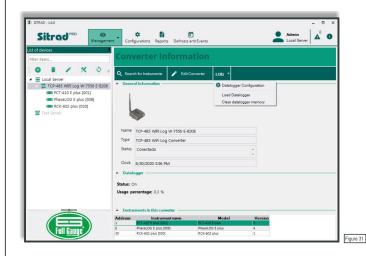

Step 1: Figure 25 shows the Sitrad * Management screen. On the Device List tab on the left select the server where the converter will be installed. This server must be on the same network as the device. On the main Server Information tab, click the Add Converter button.

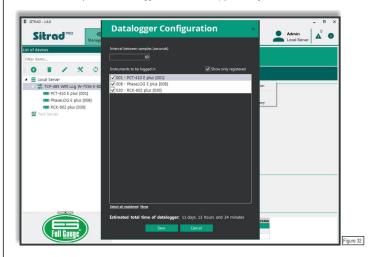

Step 2: In the **Select model** window (Figure 26), select to **Search automatically** and the software will search on the network for converters. If the converter is not available at the moment, you can add it manually by clicking on **Ethernet converter**.


Step 3: Sitrad^{ino} should perform the search on the network, and the available converters should appear in the Converter Search tab (Figure 27). Select the desired converter and click Add.


Step 4: Figure 28 shows the Converter Registration tab. Check the device data and edit if necessary. Sitrad for identifies the TCP-485 WiFi Log as TCP-485 WiFi Log with Version 2. The "Connect via" field defines wheter Sitrad for will recognize the converter on the network by IP or MAC address. If the converter is configured in Client mode with dynamic IP, it is advisable to select the MAC Address option, as the device's IP may vary within the network. After configuring the desired parameters, click on the Save button to register the converter on the server.

Step 5: Once registered, the converter will appear linked to the chosen server on the **Device List** tab. When selected, the **Converter Information** tab is displayed (Figure 29). To register the instruments that are in the RS-485 network of this new converter, click on the **Search Instruments** button.


Step 6: The Instrument Search tab allows you to register instruments by address. There are two options: Search in address range, in which various instruments with addresses within the selected range are searched. After choosing the option, just click on Search and Sitrad[®] automatically registers the instruments (Figure 30). If you choose to search the full range of addresses, the process may take a few minutes. The registered instruments will now appear on the Device List tab, linked to the converter.


10.2 Managing the Datalogger

10.2.1. Set up

Step 1: With the converter selected, select the LOG **De**Configure Datalogger menu on the **Converter Information** tab (Figure 31).

Step 2: The Datalogger Configuration screen is displayed (Figure 32). Set the interval between samples and select the instruments you want to be registered in the datalogger. Only registered instruments are displayed in the list. To insert instruments per address that have not been installed yet, uncheck the "Show only registered" box, and all addresses will be available to choose from. The screen also displays the estimated total history time of the datalogger. Click Save to keep your changes.

10.2.2. Loading

To load the converter Datalogger, select the LOG **D**Load Datalogger menu on the Converter Information tab (Figure 31). In the Datalogger section, a progress bar indicates the process and the percentage elapsed in loading the datalogger (see Figure 33).

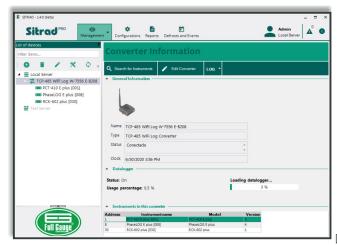
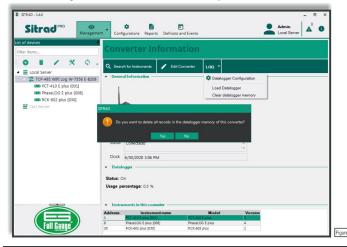



Figure 33

10.2.3. Delete

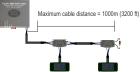
To delete the Datalogger data from the converter, select the LOG Declear Datalogger memory menu on the Converter Information tab (Figure 31). A window will be displayed confirming the operation (Figure 34). Select Yes and all logs will be deleted from the converter's memory.

When the TCP-485 Wi-Fi Log uses wireless communication, some recommendations must ve taken into account when installing it, in order to guarantee its best performance. Here are some of them.

- 1) Check that the Wi-Fi devices are compliant with the IEEE 802.11 b/g/n standard;
- 2) Install the Wi-Fi router preferably at the highest point of the room, so that your signal is better broadcast, with a minimum or interference from obstacles;
- 3) Observe in the router's technical specifications how many simultaneous connections it supports;
- 4) Avoid sources of interference, such as:
- Microwave ovens;
- Direct Satellite Services (DSS);
- Power sources (power transmission lines, electric railway tracks and power stations);
- 2.4 GHz or 5 GHz phones;
- Wireless radio frequency video;
- Wireless speakers;
- LCD screens and external monitors;
- Unprotected cables;
- Other wireless devices
- 5) At the installation site, avoid physical barriers that attenuate the signal, below we have a table with the level of attenuation of each material:

Barrier types	Interference potential		
Wood	Low		
Synthetic materials	Low		
Glass	Low		
Water	Medium		
Brick	Medium		
Marble	Medium		
Plaster	High		
Concrete	High		
Armored glass	High		
Metal	Very high		

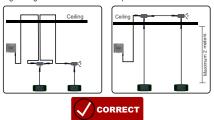
CONNECTING CONTROLLERS, RS-485 SERIAL INTERFACE AND COMPUTER



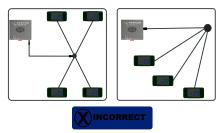
12.1 FOR A ROBUST ELECTRICAL INSTALLATION, TRY TO FOLLOW THE RECOMMENDATIONS BELOW:

- Use 2-way cable, with a minimum of 24AWG;
- Use preferably shielded cables in order to protect the communication line from external interference;
- If necessary, please use a connection block;
- Use the connection blocks to make the connections to the controllers. In addition to facilitating the connection, they have a protection purpose;
- -Avoid connections greater than 2 meters (6.5 ft) between the connection block and the controller;
- Use a maximum number of 32 devices connected to each Interface.

- Dimension networks with a maximum length of 1000m (3200 ft) between the Interface and the last



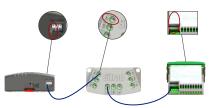
- Connect a 120 ohm terminating resistor between terminals A and B of the connection block at the end of the line when using a cable length greater than 100m (320 ft).


12.2 RECOMMEND TOPOLOGIES:

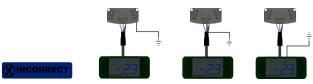
- Use one of the following settings to create a well-defined path

12.3 NON-RECOMMENDED TOPOLOGIES

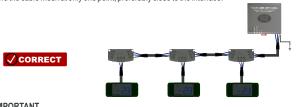
- Avoid creating long network branches.



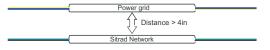
12.4 CONNECTION BLOCK FOR SERIAL COMMUNICATION



It is used to connect more than one controller to the interface. Wire connections should be made as follows:


Terminal A of the controller connects to terminal A of the connection block, which in turn must be connected to terminal **A** of the Interface. Repeat the procedure for terminals **B** and $\frac{1}{2}$ with $\frac{1}{2}$ being the cable mesh. The ♦ terminal of the connection block must be connected to the respective ♦ terminals of each controller.

- Do not ground the controllers independently.


- Ground the cable mesh at only one point, preferably close to the interface.

12.5 IMPORTANT

According to NBR 5410 standard chapters:

- 1. Install surge protectors in the supply.
- 2. Sensor and serial communication cables can be together, but not in the same conduit through which electrical power and load activation pass.

ENVIRONMENTAL INFORMATION

Packaging

e materials used in the packaging of Full Gauge products are 100% recyclable. Try to form disposal through specialized recyclers.

Product

The components used in Full Gauge controllers can be recycled and reused disassembled by specialized companies.

Do not incinerate or dispose the controllers that have reached the end of their service as household garbage. Observe the laws in your area regarding disposal of electronic waste. If in doubt, please contact Full Gauge Controls.

WARRANTY - FULL GAUGE CONTROLS

The products manufactured by Full Gauge Controls after May 2005, have a warranty period of 10 (ten) years directly with the factory and 01 (one) year with accredited resellers, counted from the date of sale included on the invoice. After this year with resellers, the guarantee will continue to be valid if the instrument is sent directly to Full Gauge Controls. This period is valid for the Brazilian market. Other countries have a 2 (two) year warranty. The products are guaranteed in case of manufacturing failure that makes them unsuitable or improper for the applications for which they are intended. The warranty is limited to the maintenance of instruments manufactured by Full Gauge Controls, disregarding other types of expenses, such as indemnity due to damage caused to other equipment.

EXCEPTIONS TO WARRANTY

The Warranty does not cover expenses incurred for freight and/or insurance when sending products with signs of defect or faulty functioning to an authorized provider of technical suppor services. The following events are not covered either: natural wear and tear of parts; externa damage caused by falls or inadequate packaging of products.

LOSS OF WARRANTY

Products will automatically lose its warranty in the following cases

- The instructions for assembly and use found in the technical description and installatio
- The product is submitted to conditions beyond the limits specified in its technical description
- The product is violated or repaired by any person not a member of the technical team of Ful Gauge Controls:
- Damage has been caused by a fall, blow and/or impact, infiltration of water, overload and/or atmospheric discharge.

USE OF WARRANTY

To make use of the warranty, customers must send the properly packaged product to Full Gaug Controls together with the invoice or receipt for the corresponding purchase. As much informatio as possible in relation to the issue detected must be sent to facilitate analysis, testing an execution of the service.

These procedures and any maintenance of the product may only be provided by Full Gauge Controls Technical Support services in the company's headquarters at Rua Júlio de Castilhos, 256 - CEP 92120-030 - Canoas - Rio Grande do Sul – Brasil

© Copyright 2020 • Full Gauge Controls ® • All rights reserved.