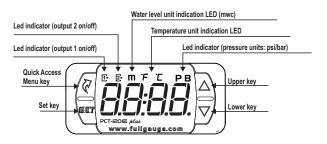


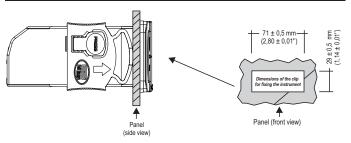
PCT-120E plus

DIGITAL PRESSURE CONTROLLER AND INDICATOR

Programming


1. DESCRIPTION

The PCT-I20 is an easy to install and operate two-stage pressure controller designed for systems that require effective pressure control. Operating in pressurization, despressurization, refrigeration, heating or alarm mode, it directly controls loads of up to 1HP. It also has digital inputs that allow external devices to be used for protecting the controller system, hourmeters that store the number of hours compressors/pumps are operating and indicate when maintanance should be performed on them. Operating in combination with temperature sensors, it also performs dynamic and adiabatic condensation control, dynamic evaporation, superheating and subcooling monitoring, promoting greater energy efficiency in the system. It also has serial output for communication with Sitrad and an intelligent locking function, preventing unauthorized persons from changing the control parameters


• Control over suction or discharge in refrigeration systems, air compressors, semi-artesian pumps, water tanks and filters, superheating and subcooling monitoring.

3. TECHNICAL SPECIFICATIONS 90~240Vac (50/60 Hz) PCT-120E Plus: 12Vac/dc 10% (50/60 Hz) PCT-120EL Plus 12Vac/dc: PCT-120EL Plus 24Vac/dc: 24Vac/dc 10% (50/60 Hz) -14 to 850 psi / -1 to 58.6 bar (configurable sensor Pressure control range operating range) Temperature control range -50 to 200°C / -58 to 392°F Water level control range 0 to 250 mwc (configurable sensor operating range) Approximate consumption ± 4VA SB69 - 100A* (0 to 100 psi / 0 to 6,9 bar) SB69 - 200A* (0 to 200 psi / 0 to 13,8 bar) SB69 - 500A* (0 to 500 psi / 0 to 34,4 bar) SB69 - 850A* (0 to 850 psi / 0 to 58,7 bar) SB70* - (-50 to 105°C / -58 to 221°F) SB59* - (-50 to 200°C / -58 to 392°F) Sensors available for acquisition Pressure resolution 1 psi / 0,1 bar Temperature resolution 0,1°C / 1°F 0,1 mwc Water level resolution Operating temperature 0 to 60°C / 32 to 140°F OUT1: 16A / 1HP 250Vac Maximum current OUT2: 16A / 1HP 250Vac 10 to 90% UR (no condensation) Operating humidity Digital Inputs Configurable dry contact IP 65 (frontal) Protection level 76 x 34 x 77 mm (W x H x D) (2,99 x 1,33 x 3,03") Product dimensions

Dimensions of the clip for fixing the instrument 4. INDICATORS AND KEYS

5. INSTALLATIONS - PANEL AND ELECTRIC CONNECTIONS

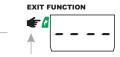
⚠ WARNING

FOR INSTALLATIONS THAT REQUIRE WATER TIGHTNESS, THE OPENING TO INSTALL THE CONTROLLER MUST BE 71.5×29.5 mm (26.16 x 11.6 in) MAXIMUM. THE SIDE LATCHES MUST BE FIXED SO THAT THEY PRESS THE SEALING GASKET TO PREVENT INFILITATIONS DETWEEN THE OPENING AND THE CONTROLLER.

, IT IS ESSENTIAL TO USE THE CORRECT TOOLS IN ORDER TO AVOID DAMAGES TO THE INSTRUMENT'S CONNECTION TISESSENTIAL 10 00 € 17.2 00 € 17.2 TERMINALS:

② 2.4 mm (3/32") SLOTTED SCREWDRIVER FOR ADJUSTMENTS IN THE SIGNAL TERMINALS;

PHILLIPS SCREWDRIVER #1 FOR ADJUSTMENTS AT THE POWER TERMINALS.


6. OPERATIONS

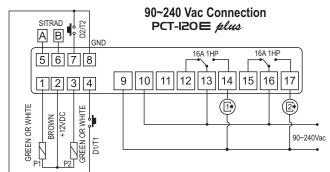
6.1 Quick Access Menu Map

To access or browse the quick access menu, use the \mathbf{d} key (quick touch) while the controller is displaying the pressure. Each touch displays the next function in the list; to confirm, use the \mathbf{d} key (quick touch)

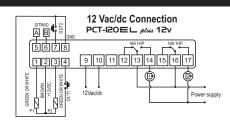
PRESSURE ADJUSTMENT (SETPOINT)

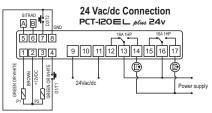
DIFFERENTIAL ADJUSTMENT (HYSTERESIS)

HOURMETER VIEW


RESET OF THE HOURMETER

FUNCTIONS LOCK


5.1INSTALLATION - ELECTRIC CONNECTIONS



Electrical connection of temperature sensors/digital inputs: D1/T1: Pins 4-8 D2/T2: Pins 7-8

Electrical connection of pressure Brown: 12 Vdc Green or White: 4~20 mA

71±0,5 x 29 ± 0,5 mm (2,80 x 0,01 x 1,14 x 0,01")

6.2 Quick access keys map

When the controller is displaying the standard screen, the following keys can be used as shortcuts for the functions below:

SET	Pressed for 2 seconds: Setpoint adjustment.
	Quick touch: Maximum and minimum temperatures/pressures display.
	Pressed for 2 seconds: Clear history when records are being displayed.
	Pressed for 4 seconds: If operating in the well/tank control mode, displays the time of the current status of the cyclical timer.
5	Quick touch: Momentarily toggles the display of pressure/temperatures.
7	Pressed for 2 seconds: Inhibits alarms.
5	Pressed for 4 seconds: If operating in rotation mode, displays the operating time of the outputs.
~	Enter the quick access menu
C	Pressed for 5 seconds: Control Functions Shutdown
	Enters function selection

6.3 Basic operations

6.3.1 Adjusting the setpoint

To enter the setpoint adjustment menu, press after a seconds until 5 E E is displayed or use the quick access menu key. The message 5 P / and then the value to adjust the setpoint of stage 1 will be displayed in sequence.

- If the 1st stage is set to pressurization, depressurization or floating condensation pressure, the set pressure will be displayed. If set to cooling, heating, or floating condensation temperature, the set temperature will be displayed. If adjusted to control wells or water tanks, the set mwc water level will be displayed. When programmed as a differential pressure controller, the difference in the set pressure is displayed.

Use the keys or to change the value and press to confirm.

- If the 2nd stage is configured as pressurization, depressurization or floating evaporation pressure, the message [5P2] and then the set pressure will be displayed. If configured as cooling or heating, the message [5P2] and then the set temperature will be displayed. If configured as adiabatic condensation, the message 5P2 and then the set differential temperature will be displayed. Again, use the keys or to change the value and press to confirm.

Finally, the indication [--- is signaled concluding the configuration.

Note: In order to be able to adjust the temperature setpoint in the 1st stage, the T1 temperature sensor must be enabled in the to configure the temperature setpoint in the 2nd stage, the T2 temperature sensor must be enabled in the "F5B - Digital input 2 operating mode"

Note: If the 2nd stage is set to alarm or rotation, the 5P2 message will not be displayed. If the 2nd stage is set as an adiabatic condensation control, the adjusted value will be relative to the temperature difference between the T1 and T2 temperature sensors.

6.3.2 Functions Lock

The use of the functions lock brings greater security to the operation of the instrument. When it is active, the setpoint and other parameters can be visible to the user but are protected against undue changes

 [☐] = [②]. Also, it is possible to lock changes of control functions and leave the adjustment of the setpoint and hysteresis adjustments enabled
 [☐] = [①].

To activate functions lock, access the [] option in the quick access menu. The message will be displayed (lock must be enabled and inactive). With that on the display, press the wey for the time configured for the functions lock $\boxed{\digamma77}$, the activation is indicated by the $\boxed{\textsterling95}$ $\boxed{\textsterling97}$ message. To enable the use of this function, $\boxed{F75}$ must be configured with 1 or 2.

The message [LDE] when you try to change the parameters indicates that the function lock is active. To unlock the controller, turn the controller off and on again with the key \mathbf{V} pressed and hold it down until the message [L [] [] F F] indicates the unlocking (10 seconds).

6.3.3 Control functions shutdown

Turning the control functions off allows for the controller to operate just as pressure or temperature indicator, keeping the control output and the alarms offline. This feature can be enabled or disabled through the "Control functions shutdown $\boxed{\digamma 79}$ ". When enabled, the control and alarm functions are turned off $(\boxed{\digamma F})$ or on $(\boxed{\digamma F})$ or on $(\boxed{\digamma F})$ through the $\boxed{\digamma F}$ will be displayed alternately. with the pressure or temperature and the other messages. It is also possible to switch the control functions on/off by pressing the <a> key for five seconds.

Note: When the control functions are switched back on, the time set in the "delay" function "FIJ3-When the instrument is powered on (initial delay) is counted".

6.3.4 Minimum and Maximum Records

Pressing the (quick touch) key while the pressure/temperature is displayed will show the message and then the minimum pressure/temperature and maximum pressure/temperature recorded. Note: If the key is pressed while the records are being displayed the values will be reset and the message F 5 E E will be displayed.

6.3.5 Alarm Inhibition

indications, the instrument must exit and re-enter an alarm condition and remain so until the time set in the "Alarm Validation Time" (OUT 1 and OUT2) F57]" is exceeded.

6.3.6 Hourmeter

The hourmeter indicates the number of hours the outputs configured as pressurization/depressurization/heating/cooling have been working. The hourmeter can be viewed through the quick access menu (a) in the option Hour and the working time of each output is displayed in hours. The maximum output operation time for maintenance can be set through the functions "Maximum output OUT1 operation time for maintenance $[F \supseteq 3]$ " and "Maximum output OUT2 operation time for maintenance F56". When the number of on-output hours reaches the value set in these functions, an alert will be shown on the display: [18] when output 1 or [18] when output 2, indicating that the maintenance should be performed in the corresponding output.

message r5 ! or r5 ? , will be displayed depending on the output chosen.

6.3.7 Display of elapsed time in the cyclical timer and manual adjustment of the cyclical timer state

When the 1st stage is configured to control of the semi-artesian well and water tank (pressure control with cyclical timer), the elapsed time can be viewed in the cyclical timer by pressing the A key for 4 seconds until the LYCL. message appears. Releasing the A, key will display the current state FDn or FDFF and the elapsed time of the cyclical timer. If the A key is pressed and maintained during the display of the cyclic timer time, the control state of the cyclic timer is changed from "on" to "off", or vice versa, regardless of the elapsed time. Changing the cyclic timer status will display the message

6.3.8 Display of the running time of the outputs in rotation mode and choice of output:

the times will be reset. Once this is done, the message FEE will be displayed and then DuE 1 or Dube?, indicating which output will be the first to be activated. Every time the times are reset, the actuation goes to the next output.

6.3.9 View other measurements

- Pressure in the transducer P1

P 1-2 - Pressure differential between P1 and II E - Depth/height of water level in an mwc Pressure differential between P1 and P2

- Depth/height of water level in relation to surface (in meters)

- Sensor T1 temperature

- Sensor T2 temperature -Temperature differential between T1 and T2

- Saturation temperature related to the pressure transducer P1

- Saturation temperature related to the pressure transducer P2

-Superheating 5 u P

- Subcooling

5 u b 5 P 1 - Active setpoint of the first stage

5 P 2 - Active setpoint of the second stage

The measurement chosen will be shown on the display for 15 seconds and the preferred indication will be shown again after the time has elapsed (according to adjustments to the "Display mode [F [] 2]"). If any measure is disabled, it will not be displayed.

6.4. Selection of pressure and temperature units

DCI / OC

To select the unit in which the instrument will operate enter the function Fg | using the access code 23 | then press the key 1. Then, select the desired pressure unit 95 | or 68 | using the key, confirming by pressing 1, after which select the desired temperature unit 0 | or 0 | or 0 | which is pressing 1.

Whenever one of the units is changed the configuration of the functions assume the factory default, so they need to be configured again.

6.5. Advanced Operations

The functions menu can be accessed through the quick access menu, option Func or by pressing and simultaneously during the measure unit display. To allow change of parameters, enter Full by pressing (quick touch) and using the keys or preserved one hundred and twenty-three (123), and then confirm with . For changing the other functions, browse the menu through the keys and proceed the same way in order to adjust them. To exit the menu and return to the normal operation, press 【(long touch) until [- - -] is displayed.

Note: If the functions lock is enabled, when pressing the ▲ or ▼, the controller will display the message

[L [] [] and will not allow parameter adjustment.

6.6 Parameter Table

0.0.0	· unioto: i unio	PSI/*C				BAK / °F			
Fun	Description		Max	Unit	Default	Min	Max	Unit	Default
FOI	Access code	0	999	-	0	0	999	-	0
F02	Display indication mode	1	12	-	1	1	12	-	1
F D 3	Delay when powering the instrument on (initial delay)	0(No)	9999	min.	0(No)	0(No)	9999	min.	0(No)
F 0 4	1st stage operation mode (OUT 1)	0	6	-	1(press)	0	6	-	1(press)
F 0 5	Pressure Setpoint OUT1	-14	850	PSI	150	-0,9	58,6	BAR	10,3
F06	Pressure control differential (Hysteresis) OUT1	1	850	PSI	20	0,1	58,6	BAR	1,3
F07	F [] 7] Minimum pressure setpoint allowed for the end user OUT1		850	PSI	-14	-0,9	58,6	BAR	-0,9
F08	Maximum pressure setpoint allowed for the end user OUT1		850	PSI	850	-0,9	58,6	BAR	58,6
F 0 9	Lower transducer pressure limit P1 (pressure at 4mA)	-14	850	PSI	0	-0,9	58,6	BAR	0,0
F 10	Upper transducer pressure limit P1 (pressure at 20mA)	-14	850	PSI	500	-0,9	58,6	BAR	34,4
F	Transducer pressure offset P1	-50	50	PSI	0	-3,4	3,4	BAR	0,0
F 12	Low pressure in transducer P1 alarm	-14	850	PSI	-14	-0,9	58,6	BAR	-0,9

		PSI / °C			BAR/°F				
Fun	Description	Min	Max	Unit	Default	Min	Max	Unit	Default
	High pressure in transducer P1 alarm	-14	850	PSI	850	-0,9	58,6	BAR	58,6
F 14	OUT1 temperature setpoint	-50	200	°C	0,0	-58,0	392	°F	32
F 15	Temperature control differential (Hysteresis) OUT1	0,1	20,0	°C	1,0	1	36	°F	1
F 16	Minimum temperature setpoint allowed for the end user OUT1	-50	200	°C	-50	-58,0	392	°F	-58
F 17	Maximum temperature setpoint allowed for the end user OUT1	-50	200	°C	200	-58,0	392	°F	392
F 18	S1 sensor temperature indication offset	-5.0	5,0	°C	0	-9	9	°F	0,0
F 19	Low temperature alarm sensor T1	-50	200	°C	-50	-58,0	392	°F	-58
F20	High temperature alarm sensor T1	-50	200	°C	200	-58,0	392	°F	392
F21	Time for setpoints validation (OUT1)	0(No)	30	sec.	0(No)	0(No)	30	sec.	0(No)
F22	Minimum output off time (delay between activations) OUT1	0(No)	9999	sec.	0(No)	0(No)	9999	sec.	0(No)
F23	Maximum output operating time OUT1 for maintenance (hourmeter)	0(No)	9999	hours	0(No)	0(No)	9999	hours	0(No)
F24	Lower pressure limit in mwc of transducer P1 (4 mA)	0,0	250,0	mwc	0,0	0,0	250,0	mwc	0,0
F 2 5	Upper pressure limit in mwc of transducer P1 (20 mA)	0,0	250,0	mwc	250,0	0,0	250,0	mwc	250,0
F 2 6	P1 transducer depth offset	-10,0 0	10	mwc	0	-10,0 0	10	mwc	0
F27	Control of semi-artesian wells or water tanks Setpoint for semi-artesian wells or water tanks	0,1	1 250,0	-	50,0	0,1	1 250,0	- mwc	50,0
F29	Hysteresis for semi-artesian wells or water tanks	0,1	250,0	mwc mwc	10,0	0,1	250,0	mwc	10,0
F 3 0	Transducer P1 installation level for control of wells/tanks	0,0	999,9	m	500,0	0,0	999,9	m	500,0
F 3 1	Critical water level for control of wells/tanks	0(No)	250,0	mwc	0(No)	0(No)	250,0	mwc	0(No)
F 3 2	Wells/tanks control time on (cyclical timer)	1	9999	min	1	0(No)	9999	min	1
F 3 3	Wells/tanks control time off (cyclical timer)	0(No)	9999	min	0(No)	1	9999	min	0(No)
F34	Filter Control - Difference (P1-P2) for starting the pump	-14	850	PSI	7	-0,9	58,6	BAR	0,4
F 35	Filter Control - Difference (P1-P2) for shutting down the pump	-14	850	PSI	20	-0,9	58,6	BAR	1,3
F 3 6	Enable alarm for changing the filter	0(No)	1(Yes)	-	0(No)	0(No)	1(Yes)	-	0(No)
F37	2nd stage operation mode (OUT2)	0(No)	8(Off)	-	8(Off)	0	8(Off)	-	8(Off)
F 3 B	Pressure Setpoint OUT2	-14	850	PSI	150	-0,9	58,6	BAR	10,3
F 3 9	Pressure control differential (Hysteresis) OUT2	1	850	PSI	20	0,1	58,6	BAR	1,3
F40	Minimum pressure setpoint allowed for the end user OUT2	-14	850	PSI	-14	-0,9	58,6	BAR	-0,9
FYI	Maximum pressure setpoint allowed for the end user OUT2	-14	850	PSI	850	-0,9	58,6	BAR	58,6
F42	Lower transducer pressure limit P2 (pressure at 4mA)	-14	850	PSI	0	-0,9	58,6	BAR	0,0
F 43	Upper transducer pressure limit P2 (pressure at 20mA)	-14	850	PSI	500	-0,9	58,6	BAR	34,4
FYY	Transducer pressure offset P2	-50	50	PSI	0	-3,4	3,4	BAR	0,0
F 45	Low pressure in transducer P2 alarm	-14	850	PSI	-14	-0,9	58,6	BAR	-0,9
F 46	High pressure in transducer P2 alarm	-14	850	PSI	850	-0,9	58,6	BAR	58,6
FYT	OUT2 temperature setpoint	-50 0,1	200	°C	0,0	-58,0 1,0	392 36	°F	32 1
F 4 B	Temperature control differential (Hysteresis) OUT2 Minimum temperature setpoint allowed for the end user OUT2	-50	20,0	°C	1,0 -50	-58,0	392	°F	-58
F 5 0	Maximum temperature setpoint allowed for the end user OUT2 Maximum temperature setpoint allowed for the end user OUT2	-50	200	°C	200	-58,0	392	°F	392
F 5 1	T2 sensor temperature indication offset	-5,0	5,0	°C	0	-9	9	°F	0,0
F52	Low temperature alarm sensor T2	-5,0	200	°C	-50	-58,0	392	°F	-58
F 5 3	High temperature alarm sensor T2	-50	200	°C	200	-58,0	392	°F	392
F54	Time for setpoints validation (OUT2)	0(No)	30	sec.	0(No)	0(No)	30	sec.	0(No)
F 5 5	Minimum output off time (delay between activations) (OUT2)	0(No)	9999	sec.	0(No)	0(No)	9999	sec.	0(No)
F56	Maximum output operating time OUT2 for maintenance (hourmeter)	0(No)	9999	hours	0(No)	0(No)	9999	hours	0(No)
F57	Alarm Validation Time (OUT1 and OUT2)	0(No)	9999	sec.	0(No)	0(No)	9999	sec.	0(No)
F 5 B	Operating mode of the digital input 1	0(Off)	11	-	0(Off)	0(Off)	11	-	0(Off)
F 5 9	Operating mode of the digital input 2	0(Off)	11	-	0(Off)	0(Off)	11	-	0(Off)
F 6 0	Rotation time between OUT1 and OUT2	1	9999	min.	1	1	9999	min.	1
F 6 1	Flow switch validation time	0(No)	9999	sec.	0(No)	0(No)	9999	sec.	0(No)
F62	Number of attempts to alert about lack of flow	1	9999	-	1	1	9999	-	1
F 6 3	Cooling fluid	1 0(Off)	10	-	1	1 0/Off)	10	-	1
F 6 4	Superheating calculation	0(Off) 0	200	°C	0(Off) 5,0	0(Off) 32	4 392	°F	0(Off) 41
F 6 6	Low superheating alarm High superheating alarm	0	200	°C	10,0	32	392	°F	50
	Subcooling calculation	0(Off)	200	-	0(Off)	0(Off)	2	- -	0(Off)
F 6 8	Low subcooling alarm	0(011)	200	°C	5,0	32	392	°F	41
F 6 9	High subcooling alarm	0	200	°C	10,0	32	392	°F	50
	Floating condensation control (Dynamic Setpoint)	1	2	-	1	1	2	-	1
F71	Floating condensation - Float start temperature	-50	200	°C	30	-58	392	°F	86
F72	Adiabatic condensation - Minimum external temperature (safe level)	-50	200	°C	-50	-58	392	°F	-58
F 73	Adiabatic condensation - Difference (T1-T2) for starting the pump	-50	200	°C	1,0	-58	392	°F	33
F74	Adiabatic condensation - Difference (T1-T2) for shutting down the pump	-50	200	°C	3,0	-58	392	°F	37
F 75	Floating evaporation (Dynamic Setpoint) - Float start temperature	-50	200	°C	30	-58	392	°F	86
F 76	Functions lock mode	0	2	-	0	0	2	-	0
[F77]	Time for functions lock	15	60	sec.	15	15	60	seg.	15
F 78	Control functions shutdown	0(No)	2	-	0(No)	0(No)	2	-	0(No)
F 79	Address of the instrument in the RS-485 network	1	247	-	1	0	247	· .	1

6.6.1 Description of the parameters

F01 - Access Code:

It is required when intending to change the configuration parameters. Entering of the code is not required if the intention is just visualizing the parameters adjusted.

It allows entering of the expected access codes:

[2]-Allows access for changing the table parameters

[3]-Allows the unit of pressure and temperature measurement to be set

F02 - Display indication mode:

- Specify the display preference:

 Pressure in the transducer P1
 - Pressure in the transducer P2
- -Pressure differential between P1 and P2
 - Depth/height of water level in an mwc Depth/height of water level in relation to surface (in meters)

<u> 5</u>].	Sens	or T	1 tem	nerat	ture

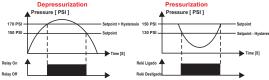
- Sensor T2 temperature
 Sensor T2 temperature
 Sensor T2 temperature
 Sensor T3 temperature
 Sensor T4 temperature
 Sensor T4 temperature
 Sensor T5 tem
- | Tij Superheating temperature | Tij Subcooling temperature | Tij Subcooling temperature | If the measurement is not available (e.g. sensor is disabled), the message | Find | will be displayed.

F03 - Delay when powering the instrument on (initial delay):
This is the time elapsed from initialization, during which the instrument just displays the pressure/temperature without activating outputs or validating alarms. In multi-instrument installations, spikes in demand can be prevented by assigning different values to this function and causing loads to be triggered at different times.

This function can be disabled by adjusting it to the minimum value 0 _____.

F04 - 1st stage operation mode (OUT1): Depressurization Pressurization -Cooling - Heating Floating Condensation Control |-Control for semi-artesian wells and water tanks (pressure control with cyclical timer) |-Filter control (differential pressure control)

Note: In order for OUT1 to operate in cooling or heating modes, the T1 temperature sensor must be enabled in the "digital input 1 operating mode [F.S.]".


F05 - Pressure Setpoint OUT1:

This is the reference value for pressure control.

F06 - Pressure control differential (Hysteresis) OUT1:

It is the pressure difference (hysteresis) between switching control output ON and OFF. Example: To control the pressure in 150 PSI (setpoint) with differential of 20 PSI. Therefore, in the depressurizing mode, the output will be switched off at 150 PSI and switched back on at 170 PSI (150 +

In the pressurizing mode, the output will be switched off at 150 PSI and switched back on at 130 PSI (150 PSI and swit -20)

F07 - Minimum pressure setpoint allowed for the end user OUT1:

Avoids regulation of excessively low setpoint pressures by mistake.

F08-Maximum pressure setpoint allowed for the end user OUT1:

 $\label{lem:condition} A voids \, regulation \, of \, excessively \, high \, setpoint \, pressures \, by \, mistake.$

F09 - Lower transducer pressure limit P1 (pressure at 4mA):

Pressure applied to the pressure transducer when a 4 mA current in PSI or Bar is displayed in its output.

F10 - Upper transducer pressure limit P1 (pressure at 20mA):

Pressure applied to the pressure transducer when a 20 mA current in PSI or Bar is displayed in its output.

Note: When the 1st stage operational mode is set to control semi-artesian wells and water tanks, the mwc unit is used and the instrument factors in the values for the F24 and F25 positions for the to the pressure sensor limits.

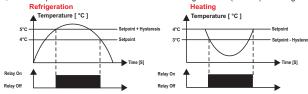
F11 - Transducer pressure offset P1:

Allows to compensate reading differences of the pressure transducer.

F12 - Low pressure in transducer P1 alarm:

F13 - High pressure in transducer P1 alarm:

These are the minimum and maximum values for triggering the pressure alarm in the P1 transducer. If these values are exceeded, the instrument displays low pressure [PLa] or high pressure Ph. I messages, but these events only show up in alarms after the time set in the "F57] - Alarm validation time" setting.


F14-OUT1 temperature setpoint:

It is the reference value for the temperature control.

F15-Temperature control differential (Hysteresis) OUT1:

It is the temperature difference (hysteresis) between switching control output ON and OFF.

Example: One wants to control the temperature at 4.0°C (setpoint) with a differential of 1.0°C. Consequently, the output will be turned off at 4.0°C and turned on again at 5.0°C (4.0 + 1.0) in cooling mode, and the output will be turned off at 4.0°C and turned on again at 3°C (4.0 - 1.0) in heating mode.

F16 - Minimum temperature setpoint allowed for the end user OUT1:

Avoids regulation of excessively low setpoint temperatures by mistake.

F17 - Maximum temperature setpoint allowed for the end user OUT1:

Avoids regulation of excessively high setpoint temperatures by mistake.

F18-T1 sensor temperature indication offset:

Allows compensating deviations in the sensor temperature reading.

F19 - Low temperature alarm sensor T1:

F20 - High temperature alarm sensor T1:

These are the minimum and maximum values for triggering the temperature alarm in the T1 transducer. These alarms are validated only after the time specified in the "Alarm validation time" setting.

F21 - Time for setpoints validation (OUT1):

Upon reaching the setpoint the pressure or temperature must remain in this condition until this time has elapsed and then switch off the control output (it avoids overshooting in the pump/compressor activation).

F22 - Minimum output off time (delay between activations) (OUT1):

It is the minimum time the output will remain off, i.e. the length of time between the last start up and the next stop. The main purposes of this function are: minimize interferences in the mains of the facility caused by the simultaneous activation of loads and avoid unnecessary activation of loads when there are fast variations of pressure in the system.

This function can be disabled by adjusting it to the minimum value 0

F23 - Maximum output operating time OUT1 for maintenance (hourmeter):

Whenever the output is activated the apparatus will count its operating time. When the counted time is equal or longer than the one set in this function, the display will show the message [7] | signaling that the compressor/pump must be serviced

F24 - Lower pressure limit in mwc of transducer P1 (4 mA):

Water level in (mwc) when the pressure transducer displays a 4 mA current in its output.

F25 - Upper pressure limit in mwc of transducer P1 (20 mA):

Water level in (mwc) when the pressure transducer displays a 20 mA current in its output.

mwc x pressure conversion					
1 mwc	10,197 bar				
1 mwc	0,703 PSI				

Note: Use the conversion table above to properly choose the pressure transducer. Example: for a 200 PSI transducer, the maximum limit in this function is 140.6 mwc (200 PSI*0.703 = 140.6 mwc).

F26 - P1 transducer depth offset:

Allows to compensate water level reading differences of the pressure transducer.

F27 - Control of semi-artesian wells or water tanks:

SEMI-ARTESIAN WELL

Selects the control mode (semi-artesian wells or tanks) if the "FDY - 1st stage operating mode (OUT1)" function is set to control semi-artesian wells and water tanks

_____ - Semi-artesian wells control (depressurization with cyclical timer). This mode controls the pump for withdrawing water from semi-artesian wells, indicating the water level coming from the P1 transducer reading.

] - Water tank control (pressurization with cyclical timer). This mode controls the pump for supplying water into the tanks, indicating the water level coming from the P1 transducer reading. Installation examples:

STATIC WATER LEVE LEVEL READ B

FRESIS: REACTIVATE THE PLIM

WATER TANK

F28 - Setpoint for semi-artesian wells or water tanks:

YSTERESIS: REACTIVATE THE PUN

It is the reference value for controlling the water level. Level (in mwc) where the pump is switched off.

F29 - Hysteresis for semi-artesian wells or water tanks:

The difference in level between the pump switched ON and OFF.

F30 - Transducer P1 installation level for control of wells/tanks:

It is the reference value representing the distance (in meters) from the surface to the depth/height at which the P1 transducer is installed.

The value displayed when the display mode is equal to $\boxed{\textit{\PiErS}}$ - Depth/height of water level relative tothe surface (in meters) will be the difference between this level and the water level read by the P1 transducer

F31 - Critical water level for control of wells/tanks:

Level (in mwc) at which the low water level alarm is generated Rh20

If set as the control for the semi-artesian well, the pump is switched off if this level is reached in order to prevent the pump from running dry.

This alarm is only generated after the time specified in the "F57] - Alarm validation time" setting.

F32 - Wells/tanks control time on (cyclical timer):
F33 - Wells/tanks control time off (cyclical timer):
These functions allow the length of time that instrument will control the pump operation to be regulated when the "FTY-1st stage operating mode (OUT1)" setting is set to control semi-artesian wells and

water tanks (pressure switch with cyclical timer).

During the time it's turned on, the pump is controlled by the parameters for the water level setpoint and hysteresis. During the time it's turned off, the pump will continuously stay turned off and the level alarm will be ignored. This time is needed for the level of the well water to regenerate.

By setting the time to 0 (off), the control will remain constantly active.

Reversing the cyclical timer status can be performed manually through digital input 2 by setting the

"F 5 9 - Digital input 2 operating mode" to reverse the cyclical timer.

F34 - Filter Control - Difference (P1-P2) for starting the pump:
Allows the pressure difference between the filter inlet transducer (P1) and the filter outlet transducer (P2) to be set in order to release the passage of liquid (pump or valve). When the pressure difference (P1-P2) is less than or equal to the value set in this function, the passage of liquid to the filter is released.

F35-Filter Control - Difference (P1-P2) for shutting down the pump:

Allows the pressure difference between the filter inlet transducer (P1) and the filter outlet transducer (P2) to be set in order to close the passage of liquid (pump or valve). When the pressure difference (P1-P2) is higher than or equal to the value set in this function, the passage of liquid to the filter is shut.

F36 - Enable alarm for changing the filter:

Allows the alarm for changing the litter.

Allows the alarm for changing the filter to be enabled.

When the difference (P1-P2) is greater than the value set in the "F35]-Filter Control - Difference (P1-P2) to turn off the pump" function and remain at this value during the time set in the "F57]- Alarm Validation Time (OUT1 and OUT2)" function, an alarm RF IL is generated and the instrument remains in this condition until a reset is performed via a digital input. To do this, the "Digital input 1" operating mode" function must be set as an alarm reset for changing the filter.

☐ - Depressurization ☐ - Pressurization ☐ - Cooling ☐ - Heating ☐ - Rotation ☐ - Adiabatic condensation control (differential thermostat) ☐ - Pressure floating evaporation control (depressurization) ☐ FF - Off output Note*: In order for OUT2 to operate in cooling or heating modes, the T2 temperature sensor must be enabled in the "F5g - Digital input 2 operating mode" Note*:	It allows choosing the operating mode of the digital input 1.
F38 - Pressure Setpoint OUT2: This is the reference value for pressure control. F39 - Pressure control differential (Hysteresis) OUT2: It is the pressure difference (hysteresis) between switching control output ON and OFF. F40 - Minimum pressure setpoint allowed for the end user OUT2: Avoids regulation of excessively low setpoint pressures by mistake. F41 - Maximum pressure setpoint allowed for the end user OUT2: Avoids regulation of excessively high setpoint pressures by mistake. F42 - Lower transducer pressure limit P2 (pressure at 4mA): Pressure applied to the pressure sensor when the output current is 4 mA.	F59 - Operating mode of the digital input 2: It allows choosing the operating mode of the digital input 2. ① - Disable ② - Temperature sensor 2 ② - Enables 1st stage control (OUT2) (external switch, N.O. contact) ③ - Enables 1st stage control (OUT2) (external switch, N.C. contact) ⑤ - Flow switch (N.O. contact) ⑤ - Flow switch (N.O. contact) ⑤ - External alarm ②
F43 - Upper transducer pressure limit P2 (pressure at 20mA): Pressure applied to the pressure sensor when the output current is 20 mA. F44 - Transducer pressure offset P2: Allows variants in the transducer pressure reading to be compensated. F45 - Low pressure in transducer P2 alarm: F46 - High pressure in transducer P2 alarm: These are the minimum and maximum values for triggering the pressure alarm in the P2 transducer. If these values are exceeded, the instrument displays low pressure P_L 2 or high pressure P_L 2 messages, but these events only show up in alarms after the time set in the "F57 - Alarm validation time" setting.	F60 - Rotation time between OUT1 and OUT2: If the "[-3-7] - 2nd stage (OUT2) operating mode" function is set to rotate, the OUT2 output will operate as a backup for the OUT1 output, thus activation of the outputs will alternate over time causing each pump to work for a certain time and accumulate similar usage times. After the time set in this function is exceeded, the control output will be alternated in the next cycle. Note: If the "[-3-7] - 2nd stage (OUT2) operating mode" function is set to rotate, the control parameters (pressure, temperature and alarms) related to the 2nd stage will be ignored, because OUT2 control will be related to the 1st stage parameters. F61 - Flow switch validation time: Operating in rotation, pressurization, or depressurization mode, the flow switch contact is expected to be closed as soon as an output is activated (OUT1 or OUT2).
F47 - OUT2 temperature setpoint: It is the reference value for the temperature control. F48 - Temperature control differential (Hysteresis) OUT2: It is the temperature difference (hysteresis) between switching control output ON and OFF. F49 - Minimum temperature setpoint allowed for the end user OUT2: Avoids regulation of excessively low setpoint temperatures by mistake.	Operating in pressurization or depressurization mode: If the flow switch is not triggered during the time set in this function, the number of attempts to alert about a lack of flow is increased. Operating in rotation mode: If the flow switch is not triggered during the time set in this function, the currently active pump is turned off, the number of attempts to alert about a lack of flow is increased and the running attempt goes to the other pump. If the flow switch is not enabled in the "F53 - Operating mode of digital input 2" function, this validation will not be run. This function can be disabled by adjusting it to the minimum value 0 F62 - Number of attempts to alert about lack of flow:
F50 - Maximum temperature setpoint allowed for the end user OUT2: Avoids regulation of excessively high setpoint temperatures by mistake. F51-T2 sensor temperature indication offset: Allows compensating deviations in the sensor temperature reading. F52 - Low temperature alarm sensor T2: F53 - High temperature alarm sensor T2: These are the minimum and maximum values for triggering the temperature alarm in the T2 transducer. These alarms are validated only after the time specified in the "[F 5 7] - Alarm validation time" setting.	If the number of attempts to alert about a lack of flow set in this function is reached, the outputs are turned off and a message on the lack of water flow [F _{L,O}]. In this case, the outputs remain off and the system can only be re-established by resetting the rotation (by digital input or pressing the system 6.3.8)). The number of attempts for each output is reset when the flow switch is closed. F63 - Cooling fluid: Allows to define the cooling fluid that will be used in the calculations for superheating, subcooling, floating condensation, and floating evaporation.
F54 - Time for setpoints validation (OUT2): Upon reaching the setpoint the pressure or temperature must remain in this condition until this time has elapsed and then switch off the control output (it avoids overshooting in the pump/compressor activation). This function can be disabled by adjusting it to the minimum value 0 . F55 - Minimum output off time (delay between activations) (OUT2): It is the minimum time the output will remain off, i.e. the length of time between the last start up and the next stop. The main purposes of this function are: minimize interferences in the mains of the facility caused by the simultaneous activation of loads and avoid unnecessary activation of loads when there are fast variations of pressure in the system. This function can be disabled by adjusting it to the minimum value 0 .	
F56 - Maximum output operating time OUT2 for maintenance (hourmeter): Whenever the output is activated, the apparatus will count its operating time. When the counted time is equal or longer than the one set in this function, the display will show the message $[\![\[Denta]]\!]$, signaling that the compressor/pump must be serviced. F57 - Alarm Validation Time (OUT1 and OUT2): This is the time that a (pressure or temperature) alarm will remain disabled even in alarm conditions. This inhibition time starts to be counted after the power on delay expires. A low pressure $([\![PLo]\!]$ or $[\![PLo]\!]$ and high pressure $([\![PLD]\!]$ or $[\![PLD]\!]$ or $[\![PDD]\!]$ and high pressure $([\![PLD]\!]$ or $[\![PDD]\!]$ plaarms. The low temperature $([\![RE]\!]$ and $[\![RE]\!]$ high temperature $([\![RE]\!]$ high temperatur	A pressure transducer in the suction line and a temperature sensor at the evaporator outlet or in the compressor input (total) is required. Superheating = suction temperature - saturated vapor temperature (flow curve). ①] - Disable ①] - Performs the calculation through the P1 pressure transducer and T1 temperature sensor ②] - Performs the calculation through the P2 pressure transducer and T2 temperature sensor ③] - Performs the calculation through the P1 pressure transducer and T1 temperature sensor ③] - Performs the calculation through the P2 pressure transducer and T1 temperature sensor and turns the OUT1 output off in the event of low superheating or high superheating alarms §] - Performs the calculation through the P2 pressure transducer and T2 temperature sensor and turns the OUT2 output off in the event of low superheating or high superheating alarms Note: When a stage is set as an alarm, rotation, control of semi-artesian wells and water tanks or filter control, the corresponding output will not be turned off in the event of a low superheating or high superheating alarm. F65 - Low superheating alarm: Temperature limit for indicating a low superheating (R5PL). A low superheating indicates a high dosage of cooling fluid in the evaporator, which may damage the compressor through the intake of liquid.

F58 - Operating mode of the digital input 1:

F37 - 2nd stage operation mode (OUT2):

Temperature limit for indicating a high superheating alarm [R5Ph]. A high superheating indicates a low dosage of cooling fluid in the evaporator, which may cause high temperatures in the compressor through the intake of superheated gas, in addition to reduced evaporator capacity and reduced compressor operating life.

F67 - Subcooling calculation: The subcooling control indicates how much cooling fluid is colder than the condensing temperature needed to prevent loss of performance by evaporating the cooling fluid prior to the expansion valve. A pressure transducer in the liquid line and a temperature sensor at the condenser outlet is required. Subcooling = saturated liquid temperature - temperature in the liquid line. - Performs the calculation through the P1 pressure transducer and T1 temperature sensor Performs the calculation through the P2 pressure transducer and T2 temperature sensor F68 - Low subcooling alarm: Temperature threshold for indicating a low subcooling alarm [856]. A low subcooling indicates a low heat exchange in the evaporator and a risk of flash gas prior to the expansion valve F69 - High subcooling alarm: Temperature threshold for indicating a high subcooling alarm [R5bh]. A subcooling may indicate high pressures in the system.

F70 - Floating condensation control (Dynamic Setpoint):

The floating condensation control is intended to dynamically adjust the setpoint according to the temperature in the external environment, reducing energy consumption and increasing the performance coefficient of the system. The setpoint $\frac{|S|}{|S|}$ is reduced in proportion to a reduction in the external temperature. Every 1°C/°F at which the outside temperature is reduced, 1°C/°F in the $set point is \, reduced \, or \, the \, equivalent \, in \, PSI/BAR \, according \, to \, the \, curve \, of \, the \, fluid \, saturation \, pressure.$ 7 - Control over floating condensation **pressure** using the P1 pressure transducer to measure

discharge pressure and uses the T1 temperature sensor to measure external temperature and reduce the 1st stage pressure (depressurization) setpoint 5P! 2 - Control over floating condensation temperature using the T1 temperature sensor to measure the temperature in the output of the condenser and uses the T2 temperature sensor to

measure external temperature and **reduce** the 1st stage () temperature setpoint 5 P 1 Note: For Floating Condensation Control to work, it is necessary to set the "F [] 4] - 1st Stage Operation Mode (OUT1)" function as Floating Condensation Control. In case of low subcooling alarm R5bL, the setpoint will return to its original value.

F71 - Floating condensation - Float start temperature:

Temperature measured in the external sensor, below which the control of floating condensation begins to reduce the setpoint.

If the floating condensation is controlled through pressure, the minimum setpoint is limited by the value defined in the "FII7 - Minimum setpoint of pressure permitted to the end user OUT1" function If the floating condensation is controlled through temperature, the minimum setpoint is limited by the value defined in the "FIB-Minimum setpoint of temperature permitted to the end user OUT1" function.

Note: The control of floating condensation pressure, this pressure is converted to temperature through the saturation of fluid curve.

F72 - Adiabatic condensation - Minimum external temperature (safe level):

Minimum threshold of temperature in the T1 sensor for evaporative condensation control to function. When T1 is below this value, the OUT2 output will not be activated (it remains off).

F73 - Adiabatic condensation - Difference (T1-T2) for starting the pump:

Allows the temperature difference between the external environment sensor (T1) and the sensor after the water curtain (T2) to release the passage of water (water pump or valve). When the temperature difference (T1-T2) is less than or equal to the value set in this function, the passage of water to the curtain is released. Water is sprayed by the pump (or valve) controlled by the OUT2 output reducing the dry-bulb temperature of the air passing through the water curtain providing low condensation temperatures in hot and dry climates, increasing the efficiency of the system

F74 - Adiabatic condensation - Difference (T1-T2) for shutting down the pump:

Allows the temperature difference between the external environment sensor (T1) and the sensor after the water curtain (T2) to shut the passage of water (water pump or valve). When the temperature difference (T1-T2) is higher than or equal to the value set in this function, the passage of water to the curtain is blocked.

Note: In order for the adiabatic condensation control to operate, the "[-]-] - 2nd Stage Operating Mode (OUT2)" is set as the adiabatic condensation control (differential thermostat) and the T1 and T2 temperature sensors are enabled on the digital inputs.

F75 - Floating evaporation (Dynamic Setpoint) - Float start temperature:

Temperature measured in the external sensor, below which the control of floating evaporation begins to increase the setpoint.

The maximum setpoint is limited by the value set in the "FYI - Maximum setpoint of pressure permitted to the end user OUT2" function.

The floating evaporation control is intended to dynamically adjust the setpoint according to the temperature in the external environment, reducing energy consumption and increasing the performance coefficient of the system. The setpoint $\boxed{\texttt{5P2}}$ is **elevated** in proportion to a reduction in the external temperature. Every 1°C/°F at which the outside temperature is reduced, the 1°C/°F equivalent is **elevated** in PSI/BAR in the setpoint according to the curve of the fluid saturation pressure. Using the P2 pressure transducer to measure suction pressure and using the T2 temperature sensor to measure external temperature and increase the setpoint pressure (depressurization) of the 2nd stage 5*P2* .

Note: In order for the floating condensation control to operate, the "F37] - 2nd Stage Operating Mode (OUT2)" function needs to be set as the pressure (depressurization) floating evaporation control and the temperature sensors are enabled on the digital inputs. In the event of a high temperature alarm(REIH), the setpoint will return to its original value.

F76 - Function lock mode:

	- D	oes no	tallow	the	tunct	tion	loc	ŀ
		11						۰

] - It allows a partial lock where the control functions will be locked but the adjustment of the	ìе
setpoint and hysteresis, date views, and maximum and minimum record views are allowed	

F77 - Time for functions lock:

Allows control functions lock (see item 6.3.2). 15] - 60 - Defines the time in seconds for the controller to activate.

F78 - Control functions shutdown:

Allows the turning off of the control functions (see item 6.3.3).

Disables the control functions shutdown

- Enables to activate/deactivate the control functions only if the functions are unlocked Enables to activate/deactivate the control functions even if the functions are locked

F79 -Address of the instrument in the RS-485 network:

Instrument's network address for communicating with Sitrad software.

Note: There can be no more than one instrument with the same address on a network.

7. SIGNALING	
Ernd	Error in the choice of the measurement to ideally be displayed. Parameterize the function F02 - Display indication mode.
ErP I	Error in the P1 pressure transducer: Transducer disconnected, damaged or not enabled.
[- P]	Error in the P2 pressure transducer
Ert I	Error in the T1 temperature sensor: Sensor disconnected, damaged or not enabled.
Ert2	Error in the T2 temperature sensor.
PLoI	Low pressure in the P1 transducer.
PL o 2	Low pressure in the P2 transducer.
Ph. I	High pressure in the P1 transducer.
Ph. 2	High pressure in the P2 transducer.
AP IL	Low pressure in transducer P1 alarm.
AP2L	Low pressure in transducer P2 alarm.
RP 1h	High pressure in transducer P1 alarm.
RP2h	High pressure in transducer P2 alarm.
AL IL	Low temperature in sensor T1 alarm.
AF5F	Low temperature in sensor T2 alarm.
At Ih	High temperature in sensor T1 alarm.
At2h	High temperature in sensor T2 alarm.
Ah2o	Low water level alarm in well/tank alarm.
FLo	Lack of water flow alert in the rotation mode.
AF IL	Alarm for changing the filters.
ASBL	Low sub-cooling alarm.
856h	High sub-cooling alarm.
RSPL	Low superheating alarm.
RSPh	High superheating alarm.
NA 1	OUT1 compressor/pump maintenance warning.
NA n 2	OUT2 compressor/pump maintenance warning.
d. n 1	Digital input alarm 1.
d1 n2	Digital input alarm 2.
ınıb	Alarm inhibited.
	Function lock.
	Function unlock.
[]FF	Control functions turned off.
EERL	Contact Full Gauge.
PPPP	Reconfigure the values of the functions.

^{2 -} It allows the full lock, enabling only the date views and maximum and minimum record views

8. OPTIONAL ITEMS - Sold Separately

EasyProg - version 2 or later

It is an accessory which stores the parameters of controllers. At any time, It is possible to load new parameters of a controller and unload them on a production line (of the same controller), for example. It is provided with three types of connections for loading or unloading the parameters:

- Serial RS-485: It is connected via RS-485 network to the controller (only for those controllers provided with RS-485).
- USB: It is connected to the computer via USB port, using the Sitrad Preset Editor.
- Serial TTL: The controller may be connected directly to

EasyProg via Serial TTL connection.

Ecase

Recommended for the Evolution line, it prevents water from entering the back part of the instrument. It protects the product when the installation site is washed.

Extension Frame

The Full Gauge Controls extension frame allows the installation of Evolution and Ri line controllers with maximum measures of 76x34x77mm (2,99x1,31x3,03") (dimensions of the clipping for fixing in the extension frame are 71x29mm (2,80x1,14)) in varied situations, as it eliminates precision cut to embed the instrument. It allows customization through a sticker with the brand and company contact, in addition to being accompanied by two 10A (250 Vac) switches that can trigger internal light, air curtain, on/off system or fan.

ENVIRONMENTAL INFORMATION

Packaging:

The materials used in the packaging of Full Gauge products are 100% recyclable. Try to perform disposal through specialized recyclers.

Product:

The components used in Full Gauge controllers can be recycled and reused if disassembled by specialized companies.

Disposal:

Do not incinerate or dispose the controllers that have reached the end of their service as household garbage. Observe the laws in your area regarding disposal of electronic waste. If in doubt, please contact Full Gauge Controls.

Products manufactured by Full Gauge Controls, as of May 2005, have a two (02) year warranty, as of the date of the consigned sale, as stated on the invoice. They are guaranteed against manufacturing defects that make them unsuitable or inadequate for their intended

EXCEPTIONS TO WARRANTY

The Warranty does not cover expenses incurred for freight and/or insurance when sending products with signs of defect or faulty functioning to an authorized provider of technical support services. The following events are not covered either: natural wear and tear of parts; external damage caused by falls or inadequate packaging of products.

LOSS OF WARRANTY

Products will automatically lose its warranty in the following cases:

- The instructions for assembly and use found in the technical description and installation procedures in Standard IEC60364 are not obeyed;
- The product is submitted to conditions beyond the limits specified in its technical description;
- The product is violated or repaired by any person not a member of the technical team of Full Gauge Controls;
- Damage has been caused by a fall, blow and/or impact, infiltration of water, overload and/or atmospheric discharge.

USE OF WARRANTY

To make use of the warranty, customers must send the properly packaged product to Full Gauge Controls together with the invoice or receipt for the corresponding purchase. As much information as possible in relation to the issue detected must be sent to facilitate analysis, testing and execution of the service.

These procedures and any maintenance of the product may only be provided by Full Gauge Controls Technical Support services in the company's headquarters at Rua Júlio de Castilhos, 250 - CEP 92120-030 - Canoas - Rio Grande do Sul – Brasil

Rev. 03

 $@\textit{Copyright 2019} \bullet \textit{Full Gauge Controls} \, \$ \bullet \textit{All rights reserved}.$