

MT-5I4E Faston

DIGITAL CONTROLLER FOR HEATING OR COOLING WITH DEFROST AND CONFIGURABLE ALARM OUTPUT

for quick

coupling

shutdown

EVOLUTION

WARNING

BEFORE INSTALLING THE CONTROLLER, WE RECOMMEND READING THROUGH THE ENTIRE INSTRUCTION MANUAL IN ORDER TO AVOID POSSIBLE DAMAGE TO THE PRODUCT

PRECAUTIONS WHEN INSTALLING THE PRODUCT:

Before performing any procedure on this instrument, disconnect it from the mains; Ensure that the instrument has adequate ventilation and avoid installation in panels containing devices that may cause it to operate outside the specified temperature limits;

Install the product away from sources that may generate electromagnetic disturbances such as: motors, contactors, relays, solenoid valves, etc;

AUTHORIZED SERVICE:

The installation or maintenance of the product must be performed by qualified professionals only;

ACCESSORIES:

Only use original Full Gauge Controls accessories If you have any questions, please contact technical support.

DUE TO YOUR CONSTANT EVOLUTION, THE FULL GAUGE CONTROLS RESERVES THE RIGHT TO CHANGE THE INFORMATION CONTAINED IN THIS MANUAL AT ANY TIME WITHOUT NOTICE.

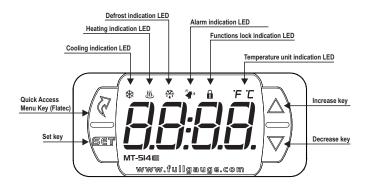
1. DESCRIPTION

The MT-5I4
☐ FASTON is a temperature controller for applications in refrigeration or heating. It has an internal buzzer and an alarm output can also be configured for electric defrost or hot gas. The minimum and maximum is displayed at the touch of a single key (Flatec).

Another available feature is the shutdown of the control functions, making it possible for the $\textbf{MT-5I4} \blacksquare \textbf{ FASTON} \text{ only operate as a temperature gauge. And through a system functions,}$ $prevents\,unauthorized\,persons\,from\,changing\,control.$ Product conforming to UL Inc. (United States and Canada)

2. APPLICATION

- · Vaccine refrigerators
- Refrigerated counters
- Freezer rooms
- Hot counters
- Greenhouses

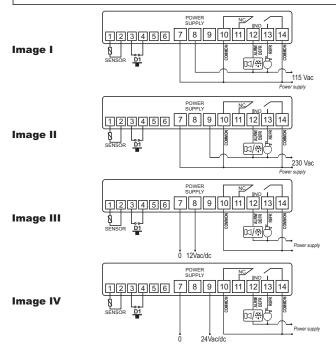

3. TECHNICAL SPECIFICATIONS

Power supply	MT-514 E Faston: 115 or 230 Vac ±10%(50/60 Hz) MT-514 EL Faston: 12 or 24 Vac/dc +10%
Control temperature	-50 to 105°C (-58 to 221°F)*
Operating temperature	0 to 50 °C / 32 to 122°F
Load current (outputs)	OUT1: 16(12)A 250Vac 2HP OUT2: 10A / 240Vac 1/4HP
Operating humidity	10 to 90%RH (without condensation)
Dimensions (mm)	76 x 34 x 84 mm (WxHxD)
Dimensions of the clipping for fixing of the instrument	$71 \pm 0.5 \times 29 \pm 0.5 \text{ mm (see item 5)}$

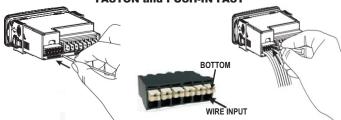
(*) This instrument measures and controls temperatures of up to 200°C/392°F, using the silicone sensor cable SB59

Note: The sensor cable length can be increased by the user up to 200 meters using PP 2 x 24 AWG cable

4. INDICATIONS AND KEYS


6. WIRING DIAGRAM

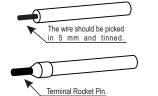
6.1. Identifications (see Images I to IV)


- Image I: MT-512E 2HP Faston, supplied at 115 Vac.
- Image II: MT-512E 2HP Faston, supplied at 230 Vac
- Image III: MT-512EL 2HP Faston, supplied at 12 Vac/dc.

- Image IV: MT-512EL 2HP Faston, supplied at 24 Vac/dc.

FOR INSTALLATIONS WHERE A SEALING IS REQUIRED TO AVOID LIQUID CONTACT, THE CUT FOR THE CONTROLLER MUST BE OF 70,5X29mm MAXIMUM. THE SIDE LOCKS MUST BE FIXED SO IT PRESSES THE RUBBER SEALING AVOIDING INFILTRATION BETWEEN THE CUT AND THE CONTROLLER.

NEW CONNECTION SYSTEM (QUICK COUPLING): FASTON and PUSH-IN FAST


CONNECTION:

- Hold the wire near its end and insert it into the desired slot.
- If necessary, press the bottom to assist the connection.

- In the Push-In connectors the maximum wire gauge that can be used is 1.5mm².
- The wires must be tinned or use Rocket Pin terminals with a maximum gauge of 0.75mm².

DISCONNECT:

- To disconnect the cord, press the bottom and remove it.

6.1. Temperature sensor connection

- Connect the sensor S1 wires to terminals "1 and 2" spring type connector. The polarity is not relevant.
- Length of the sensor cables can be increased by user himself to up to 200 meters, using a PP 2x24

6.2. Recommendations of IEC60364 standard

- a) Install overload protectors in the controller supply.
- b) Install transient suppressors suppressor filter RC in the circuit to increase the service life of the controller relay. See connection instructions of the filter on the previous page.
- c) The sensor cables may be together, but not in the same conduit where the power supply of the controller and/or of the loads passes through.

7. FIXING PROCEDURE

- a) Cutout the panel plate (Image V item 13) where the controller will be fixed, with dimensions $X = 71\pm0.5$ mm and $Y = 29\pm0.5$ mm;
- b) Remove the side locks (Image VI item 13): To do this, squeeze the elliptical central part (with the Logo Full Gauge Controls) and move the latches back;
- c) Pass the wires through the cutout of the plate (image VII Item 13) and make the electrical installation as described in item 6:
- d) Insert the controller into the panel cutout, from the outside in:
- e) Replace the latches and push then until they are pressed against the panel, securing the controller to the housing (see arrow in Figure VI - item 13);
- f) Adjust the parameters as described in item 9.

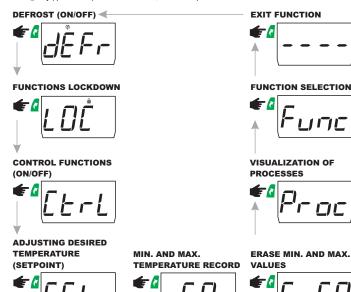
MARNING: for installations requiring liquid-tight sealing, the cut-off for the installation of the controller should be at must 70.5x29mm. The side latches must be secured so that they press the rubber sealing to prevent infiltration between the cutout and the controller.

Vinyl protector - Image IX (item 13)

Protects the controller should when installed in a place with splashing water, such as in refrigerated counters. This adhesive vinyl accompanies the instrument, on the packaging.

a) Retract the lateral locks (Image VI - item 13);

b) Remove the protective film from the adhesive side of the vinyl;


c) Apply the vinyl over the whole top, folding the flaps, as indicated by the arrows - Image IX (item 13); d) Reinstall the latches.

NOTE: The vinyl is transparent, allowing to visualize the electric scheme of the instrument.

6. OPERATIONS

6.1. Quick Access Menu Map

To access or browse in the quick access menu, use the & key (quick touch) while the temperature is being displayed by the controller. Each touch displays the next function of the list; for confirming, use the key (quick touch). For further details, refer to chapter 6.3.

6.2 Quick access kevs map

When controller is on temperature display mode, the following keys can be used as a shortcut for the following functions:

Tonorning randonom		
SET	Hold down for 2 seconds: setpoint adjustment.	
7	Quick touch: current process display.	
7	Hold down for 2 seconds: inhibit audible alarm (buzzer).	
Δ	Quick touch: maximum and minimum temperature display.	
•	Pressed for 5 seconds: turn on/turn off the control functions.	
	Hold down for 4 seconds: carries out manual defrost.	
•	Quick touch: enters quick access menu.	
	Hold down simultaneously: enters function selection.	

6.3. Basic operations

6.3.1. Adjusting desired temperature (setpoint)

If configured not to use recipes (F03= $\lceil \neg \square \rceil$):

- Hold down the Wey for 2 seconds until the message 5 E E is displayed;
- Then the message 5P will be displayed and the setpoint may be adjusted;

If configured to use presets (F03= 9 5):

Each preset may be set up to use different values for the Setpoint, Control differential (hysteresis) and Cooling time (interval between defrosts).

To select the preset:

- Hold down the \(\frac{1}{4} \) key for 2 seconds until the message \(\frac{5 \in E}{2} \) is displayed;
- Then the _currently selected preset will appear $\[\underline{r} \[\underline{c} \] \]$ or $\[\underline{r} \[\underline{c} \] \]$.
- Use the ∇ or \triangle keys to select which of the 2 presets will be used.
- To confirm the selection, press

Note: The values of functions Setpoint, Control differential (hysteresis) and Cooling time (interval between defrosts) for each preset are set up in the parameters menu.

6.3.2. Manual defrost

The manual defrost is carried out through the quick access menu. Hold down the 🛮 key (quick touch) until the message ☐ F F appears (flashing ♣ LED), and then press the ¶ key (quick touch) to make a selection. Then the message <u>| JEFr| | Jin| will appear (\$ LED on).</u>

To turn off defrost manually press the **!** key (quick touch) until the message <u>| JEFr| appears (flashing</u> ## LED). Press the \$\frac{1}{4}\$ key (quick touch) to select. Then the message \$\frac{1}{4} \in F r \ \frac{1}{1} F r \ \frac{1}{1} F r \ \frac{1}{1} \text{pr} r \ \text{appears}\$

The manual defrost may also be activated/deactivated by holding down the key for 4 seconds.

6.3.3. Functions lockdown

The use of the functions lockdown brings greater security to the operation of the instrument. When it is active, the setpoint and other parameters can be visible to the user, but are protected against undue changes (F36=2) or you can block changes of control functions and leave the adjustment of the setpoint enabled (F36=1)

Using the key (short touch), access the function [] in the easy menu, confirm by pressing time configured for the functions lockdown (F37), until [[[] [[] [] []]] is displayed. The message [[] n will be displayed indicating the lockdown function is activated upon releasing the key.

To unlock, turn the controller off and then turn it on again with the key 🔽 pressed. Keep the key pressed until [[[] [] is displayed. Keep the key pressed for ten seconds and the message [[] F F] will be shown on the display indicating the deactivation of the lockdown function when the key is released.

6.3.4. Control functions shutdown

The shutdown of the control functions allows the controller to operate only as a temperature indicator, keeping the control outputs and alarms off. The use of this feature is enabled or disabled by the shutdown function of the control functions (F38). When enabled, the control functions and alarms are switched off ($[\underline{\textit{LrL}}]$ $[\underline{\textit{DFF}}]$) or on ($[\underline{\textit{LrL}}]$ $[\underline{\textit{Dn}}]$) in the quick access menu through the $[\![\![E,F]\!]\!]$ option. When the control functions are off, the message $[\![\![F,F]\!]\!]$ is displayed alternating with the temperature and other messages. Also is possible turn on/turn off the control functions by pressing the key 6 for 5 seconds.

Note: By switched on again the control functions are counted the time defined in the instrument energization delay and alarm inhibition time by temperature

6.3.5. Visualization of Processes

To view the process and the time elapsed, press (quick touch) or by the (Flatec) key pressing it until the message Proc appears. This way, the controller will display the current process status, and the following messages may appear on the display:

- Initial delay (delay in the instrument start-up)

FEFF - Cooling dEFr - Defrost dr R ₁ - Drainage

- Control functions off

6.3.6. Minimum and Maximum Temperature Record

Pressing down the A key or also via the quick access menu (see chapter 6), will cause the message $\[\underline{r} \[\underline{\mathcal{E}} \] \]$ to be displayed, then the minimum and maximum temperatures recorded. For erasing the current minimum and maximum values, hold down the a key (quick touch) until the

message $[\underline{r},\underline{r},\underline{g}]$ is displayed, then the message $[\underline{r},\underline{g},\underline{g}]$ will appear; enter the value $[\underline{r},\underline{g},\underline{g}]$, then confirm with the Wey. If the code is correctly entered, the message ______ will be displayed. $\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$ temperature records.

Note 1: The minimum and maximum temperature records shall only be performed after the elapsing of the alarm inhibition time when energizing the controller and after the delay in the instrument energizing

Note 2: The minimum and maximum temperature records shall only be performed after the compressor reaches the active preset setpoint; before that, the _____ messages will be displayed for the records of minimum and _____ for the records of maximum temperature.

6.3.7. Unit Selection

To select the temperature unit in which the instrument will operate enter the function FD using the access code $\[\[\] \]$ then press the $\[\] \]$ key. Then, select the unit desired $\[\] \]$ to $\[\] \]$ using the $\[\] \]$ keys; to confirm press $\[\] \]$. Every time the unit is changed, the functions settings return to the default value, thus, they must be set up again.

6.3.8. Buzzer inhibition

When activated, the buzzer can be inhibited by pressing the very key for two seconds. The Buzzer will remain inhibited until a new alarm event takes place.

6.4. Advanced operations

The functions menu can be accessed through the quick access menu (according to chapter 6), option Func or by pressing simultaneously ∇ and \triangle during the temperature display. To allow change of parameters, enter F by pressing ∇ (quick touch) and using the ∇ or ∇ keys enter code 123 (one hundred and twenty-three), and then confirm with ∇ . For changing the other functions, browse the menu through the ∇ or \triangle keys and proceed the same way in order to adjust them. To exit the menu and return to the normal operation, press (long touch) until [---] is displayed.

OBS: If the functions lockdown is enabled, when pressing the or keys, the controller will display

the message LOC and will not allow parameter adjustment.

6.5. Parameters table

		CELSIUS FAHRENHEIT			IT				
Fun	Description	Min	Max	Unit	Standard	Min	Max	Unit	Standard
F 0 1	Access code 123	-		-	-	-	-		-
F 0 2	Sensor indication displacement (offset)	-5.0	5.0	°C	0	-9	9	°F	0
F 0 3	Using Presets	no	yes	-	no	no	yes		no
F 0 4	Output operating mode OUT1	0-cool.	1-heat.	-	0-cool.	0-cool.	1-heat.		0-cool.
F 0 5	Operation setpoint (rc1)	-50	200	°C	4	-58	392	°F	39
F 0 6	Control differential (Hysteresis) (rc1)	0.1	20	°C	1	1	36	°F	1
F07	Cooling time (interval between defrosts) (rc1)	1	999	min.	240	1	999	min.	240
F 0 8	Defrost time (rc1)	0(no)	999	min.	30	0(no)	999	min.	30
F 0 9	Operation setpoint (rc2)	-50	200	°C	0	-58	392	°F	32
F 10	Control differential (Hysteresis) (rc2)	0.1	20	°C	1	1	36	°F	1
F 1 1	Cooling time (interval between defrosts) (rc2)	1	999	min.	240	1	999	min.	240
F 12	Defrost time (rc2)	0(no)	999	min.	30	0(no)	999	min.	30
F 13	Minimum setpoint allowed to the end user	-50	200	°C	-50	-58	392	°F	-58
F 14	Maximum setpoint allowed to the end user	-50	200	°C	75	-58	392	°F	167
F 15	Minimum OUT1 output time on	0(no)	999	sec.	20	0(no)	999	sec.	20
F 16	Minimum OUT1 output time off	0(no)	999	sec.	20	0(no)	999	sec.	20
F 17	Initial status when energizing the instrument	0-cool.	1-defr.	-	0-cool.	0-cool.	1-defr.		0-cool.
F 18	Temperature indication locked during defrost	no	yes	-	no	no	yes	-	no
F 19	Instrument energization delay	0(no)	240	min.	0(no)	0(no)	240	min.	0(no)
F 2 0	Compressor status with the sensor damaged	0	2	-	0	0	2	-	0
F21	Compressor time on in case of error	1	999	min.	15	1	999	min.	15
F 2 2	Compressor time off in case of error	1	999	min.	15	1	999	min.	15
F23	Maximum Compressor on without reaching setpoint	0(no)	240	min.	0(no)	0(no)	240	min.	0(no)
F 2 4	Low temperature alarm	-50	200	°C	-50	-58	392	°F	-58
F 25	High temperature alarm	-50	200	°C	200	-58	392	°F	392
F26	OUT2 output operating mode	1	5	-	1	1	5	-	1
F27	Alarm inhibition time when energizing the controller	0(no)	999	min.	0(no)	0(no)	999	min.	0(no)
F28	Alarm inhibition time by temperature	0(no)	999	min.	0(no)	0(no)	999	min.	0(no)
F 29	Enable buzzer	0(off)	1	-	0(off)	0(off)	1		0(off)
F 30	Digital input operating mode	0(no)	6	-	0(no)	0(no)	6		0(no)
F 3 1	Output on time in OUT2 alarm status	0	999	sec.	1	0	999	sec.	1
F 3 2	Output off time in OUT2 alarm status	0	999	sec.	1	0	999	sec.	1
F 3 3	Open door time for alarm	0(no)	999	min.	0(no)	0(no)	999	min.	0(no)
[F34]	Operating mode of the digital filter	0	1	-	0	0	1		0
F 35	Digital filter intensity applied to the sensor	0(no)	20	sec.	0(no)	0(no)	20	sec.	0(no)
F 36	Functions lockdown	0	2	-	0	0	2	-	0
[F37]	Time for functions lockdown	15	60	sec.	15	15	60	sec.	15
F 38	Control functions shutdown	0(no)	2	-	0(no)	0(no)	2	-	0(no)

6.5.1. Description of parameters

F01- Access code 123 (one hundred and twenty-three):

This is required when intending to change the configuration parameters. Entering of this code is not required if the intention is just visualizing the parameters adjusted.

It allows entering of the expected access codes:

123 - Allows access for changing the table parameters.] - Allows configuring of the unit of measurement _____ or ____. 231 - To select the unit in which the instrument will operate enter the function FD1 using the access code 231 then press the key. Then, select the unit desired or or or using the or keys; to confirm press

NOTE: Every time the unit is changed, the parameters should be reset, since they assume the 'standard' values of the parameter's table.

F02 - Sensor indication displacement (offset):

Allows compensation for any temperature deviations from sensor replacement or change in the cable

F03 - Using Presets:

Allows configuration of the controller so as whether or not to use the presets:

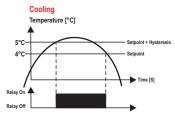
no: If configured this way, the instrument will not use the preset values in the control routines. For this purpose, the setpoint 5P will be used, adjusted via the quick access menu. The control will be used, adjusted via the quick access menu. The control The use purpose, the september $\underline{\Gamma}_{C,L}$, where $\underline{\Gamma}_{C,L}$ is present $\underline{\Gamma}_{C,L}$, $\underline{\Gamma}_{C,L$ cooling time (c c I)". Defrost time to be used will be the same as in preset 1, F08 "OUT1 output defrost time (c c I)".

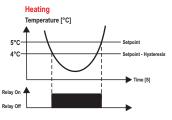
The value configured in 5 P may be adjusted between F13 "Minimum setpoint allowed to the end user" and F14 "Maximum setpoint allowed to the end user".

In this configuration, the controller will not indicate which preset is enabled.

 Yes: Selection of presets will be made through the quick access menu, in the same way as for
 adjusting the setpoint. In this configuration, the controller will indicate in the display which preset is enabled, $\lceil rc \rceil$ or $\lceil rc \rceil$. If configured this way, in the control routines the instrument will use the values of setpoint, control differential, cooling time and defrost time configured in the parameters table.

F04 - Output operating mode OUT1:


Selects the out1 output of	perating mode:
🔃 🛭 - Cooling	
Heating	


F05 - Operation setpoint ($\lceil \underline{r} \underline{r} \rceil$): It is the reference value for temperature control, that is, the temperature to be maintained in a controlled environment when preset (r c /) is used.

F06 - Control differential (Hysteresis) (_- _ _ / _):

It is the difference in temperature (hysteresis) between TURNING ON and OFF the cooling (or heating) when recipe ([r []) is used.

Example: One wants to control the temperature at 4.0 °C with a differential of 1.0 °C. Therefore, the cooling is switched off at 4.0 °C and switched back on at 5.0 °C (4.0 + 1.0).

F07 - Cooling time (interval between defrosts) ([- c /]):

Corresponds to the time the controller will act on cooling when preset ([, , ,]), is used; following this period, the controller enters the natural defrost process.

F09 - Operation setpoint (\[\(\backsize \) \(\backsize \) \):

It is the reference value for temperature control, that is, the temperature to be maintained in a controlled environment when preset (r c 2) is used.

F10 - Control differential (Hysteresis) (__c __): It is the difference in temperature (hysteresis) between TURNING ON and OFF the cooling (or heating) when preset (r c 2) is used.

 $\textbf{Example:} \ \ \textbf{One wants to control the temperature at 4.0 °C with a differential of 1.0 °C. Therefore, the}$ cooling is switched off at 4.0 °C and switched back on at 5.0 °C (4.0 + 1.0).

F11 - Cooling time (interval between defrosts) ($\lceil \underline{c} \ Z \rceil$): Corresponds to the time the controller will act on cooling when recipe ($\lceil \underline{c} \ Z \rceil$) is used; following this period, the controller enters the natural defrost process.

F13 - Minimum setpoint allowed to the end user:

Avoids regulation of excessively low setpoint temperatures by mistake.

F14 - Maximum setpoint allowed to the end user:

Avoids regulation of excessively high setpoint temperatures by mistake.

F15 - Minimum OUT1 output time on:

It is the minimum time the compressor will remain on, i.e. the time interval between the last start-up and the next stop

F16 - Minimum OUT1 output time off:

It is the minimum time the compressor will remain off, i.e. the time interval between the last stop and the next start-up. It is used to relieve the discharge pressure and increase the service life of compressor.

F17 - Initial status when energizing the instrument:

It allows defrosting when controller is energized such as, for example, upon resuming of electric power (in the event of power outage).

۰	and divonition poin
	🔃 - Cooling
	/ - Defrost

F18 - Temperature indication locked during defrost:

If F 18 is enabled, the indication will only be released at the next cooling cycle after the temperature reaches the "locked" value again, or after 15 minutes in cooling (as a safety measure).

F19 - Instrument energization delay:

This function being enabled, when the instrument is energized it only works as temperature indicator remaining with the output off during the defined time. In installations with several units of equipment, configuring different values for the delay time in the start-up of each instrument, it is possible to avoid peaks of demand by activating the loady unifer in the start by or each institution, it is porpeaks of demand by activating the loads at different times.

This delay may be of the compressor or of defrost (when defrost is configured at the start).

Note: At its end, the count of minimum time of output off is started, if there is any.

F20 - Compressor status with the sensor damaged:

If the sensor is in short-circuited, off or out of the measure range, the compressor assumes the set status in this function.

🗓 - Compressor off
/ - Compressor on
2 - Cycling according to times defined in F21 and F22
Note: If in the heating mode, and in error, the output will be switched off.

F21 - Compressor time on in case of error:

F22 - Compressor time off in case of error:

These determine the minimum time the compressor will remain on/off, respectively, if the sensor is off or out of the measure range.

F23 - Maximum Compressor on without reaching setpoint:

This is the maximum time the compressor may remain on without reaching the setpoint during the cooling process for safety reasons. If this time is surpassed, the output is switched off and also the visual alarm [AL r []] and the audible alarm (buzzer) will be activated. This function can be switched off by setting it at the minimum value 0 $\boxed{n_2}$. Note: In this situation, the controller should be switched off and switched back on so as to continue with

the operation.

Note 2: If the OUT2 output is set up to work differently from the alarm, this will also be switched off for safety reasons.

F24 - Low temperature alarm:

The temperature below which the instrument will indicate visual low temperature alarm [B+L] and the audible alarm (Buzzer). The differential for alarm shutdown is set at 0.1 °C/1 °F. This alarm considers the temperature displayed, thus being influenced by the indication of temperature lockdown during defrost F 18.

F25 - High temperature alarm:

The temperature above which the instrument indicates high visual temperature alarm [REh.] and the audible alarm (Buzzer). The differential for alarm shutdown is set at 0.1 °C/1 °F. This alarm considers the temperature displayed, thus being influenced by the indication of temperature lockdown during

Note: For safety reasons, output OUT1 is switched off when the controller is configured for heating and a high temperature alarm [athi] occurs, or when it is configured for cooling and a low temperature alarm [atlo] occurs. For this reason you must configure the alarm threshold above (if heating) or below (if cooling) the desired temperature (setpoint of output OUT1).

F26 - OUT2 output operating mode:

Selects the OUT2 output operating mode:

] - Absolute extra-range alarm: Considers the values defined in F24 and F25 as minimum and maximum values to activate the alarm output.

 $\boxed{\mathcal{Z}}$ - Extra-range alarm relating to the setpoint: Considers the active preset setpoint $\boxed{\mathit{r}_{\mathcal{L}}}$ or $\boxed{\mathit{r}_{\mathcal{L}}}$ and the absolute values defined in $\boxed{\mathit{F}_{\mathcal{L}}}$ and $\boxed{\mathit{F}_{\mathcal{L}}}$, i.e. the positive value of these functions as minimum and maximum values to activate the alarm output.

For example:

Desired temperature $\boxed{5P}$: -5 °C Low temperature alarm $\boxed{F29}$: 2 °C High temperature alarm $\boxed{F25}$: 2 °C Limits: $\boxed{5P}$ - $\boxed{F29}$ and $\boxed{5P}$ The low temperature alarm.

Limits: (5P - F24) and 5P + F25).

The low temperature alarm will be signaled at -7°C(-5-2) and the high temperature alarm at -3°C(-5+2). 3 - Electric defrost (by resistance): Where only the OUT2 output is activated during the defrost process.

ने Hot gas defrost: Where the OUT1 and OUT2 compressor outputs are activated during the

5 - OUT2 output as OUT1 output NC: In this option, the OUT2 output is activated when OUT1 output is deactivated, irrespectively of the state (cooling/heating or defrost), except when the sensor is

Note: If the OUT2 output is configured to work differently from alarm, the indications of absolute alarm are still visual (messages in the display) and audible (if the buzzer is enabled).

Note 2: If the OUT2 output is configured to work as defrost (electrical or hot gas), after elapsing of

defrost time a fixed 2-minute time period is counted for drainage. This time is necessary for the dripping i.e. for the last drops of water to run from the evaporator. Within this period, outputs OUT1 and OUT2 remain off.

F27 - Alarm inhibition time when energizing the controller:

This is the time during which the alarm remains off even under conditions of alarm during the instrument start-up. This time will be counted after elapsing of the time configured in $\boxed{F19}$. This function can be switched off by setting it at the minimum value 0 __ _ _

F28 - Alarm inhibition time by temperature:

With this configuration active, the temperature will need to remain in the alarm condition during the inhibition time set, for the alarm to be indicated. That way one can prevent alerts resulting from specific temperature variations, and after defrost.

F29 - Enable buzzer (0-Disabled/1-Enabled): Allows enabling and disabling of the internal buzzer for alarm signaling.

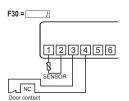
F30 - Digital input operating mode:

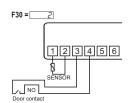
perating mode.

Selects t	ne digital input op
nο	 Disabled

Digital input: Open door (active at the contact closing)

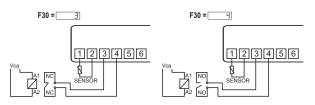
Digital input: Open door (active at the contact opening)


-Digital input: External alarm/power outage (active at the contact closing)


Digital input: External alarm/power outage (active at the contact opening)
 Digital input: Open door and power outage (active at the contact closing)

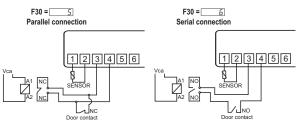
-Digital input: Open door and power outage (active at the contact opening)

Examples of connection for detecting open door alarm:


This configuration may be used for the MT-5I4E Faston to detect whether the door has been left open for a time above the value set up in "F33 - Time with open door to trigger alarm". In this configuration, the message [R0Pn] is displayed when an open door alarm is detected. To that end, the user may use the NO or NC pushbuttons (not supplied) connected to the digital input, as shown in

Examples of connection for power outage detection:

This configuration may be used when $\mathbf{MT}\text{-}\mathbf{514} \blacksquare \ \mathbf{Faston}$ is being energized by a 12/24 V DC battery (common in vaccine refrigerators) and one wants to detect when a power outage occurred (115/230 V AC). In this configuration, the message $\boxed{\textit{RUoL}}$ is displayed when alarm is detected for power outage. To that end, the user may utilize a contactor or auxiliary contact (not supplied), where NC (F30= 3) or NO (F30= 9) contacts are connected to the digital input and contacts A1 and A2 (contactor coil) are connected to the power system, as shown in examples below:



Example of connections for detecting open door and power outage:

This configuration may be used to detect power outage alarm (115/230 V AC) and also to detect that the door has been left open (either one event).

In those configurations, the messages $\boxed{\textit{RUoL}}$ and $\boxed{\textit{RDPn}}$ are displayed alternately when alarm event is detected (power outage or open door alarm).

For this purpose, the user may use the pushbuttons (not supplied) and a contactor or auxiliary contact (not supplied) connected in series or in parallel, as shown in examples below:

F31 - Output on time in OUT2 alarm status:

F32 - Output off time in OUT2 alarm status:

Selects the cycling time in seconds of the alarm output when it is active. If any of those functions are set with a value of $\boxed{\underline{\hspace{1cm}}}$ the output will be permanently active.

F33 - Open door time for alarm:

If the door remains open for a time equal to, or greater than, the one configured in this parameter, the controller will set off a visual open door alarm [A D P n] and the audible alarm (Buzzer).

The alarms are suspended upon the door closing. The audible alarm may be inhibited through the $\, m{
abla} \,$

Note 1: In order for the open door alarm to operate, the function "Digital input operating mode" F 3 [] $must\,be\,configured\,as\,open\,door\,contact.$

The audible alarm is activated only if the buzzer is enabled in the function "Enable Buzzer (0-Disabled

Note 2: If the function "Digital input operating mode" F30 is configured as open door contact, the open door indication [IPEn] will be displayed every time the door is open, except for the cases of

F34 - Operating mode of the digital filter:

: The filter acts both on the rise as on the decrease temperature.

F35 - Digital filter intensity applied to the sensor:

This filter has the purpose of simulating increase in thermal mass at the sensor thereby increasing its response time (thermal inertia). The higher the value set in this function, the more time the sensor takes

This function can be switched off by setting it at the minimum value 0 _____.

F36 - Functions lockdown:

This allows and configures the functions lockdown.

[] - Do not allow the functions lockdown.

 $\overline{\overline{eta}}$ - Allow a partial lockdown where the control functions will be locked but the adjustment of the setpoint, manual defrost, and maximum and minimum record are allowed.

2 - Allow the full lockdown, enabling only the manual defrost and maximum and minimum

F37 - Time for functions lockdown:

Allow lockdown of control functions (see item 6.3.3).

15 - 60 Defines the time in seconds for the controller to activate.

F38 - Control functions shutdown:

Allow control functions shutdown (see item 6.3.4).

Disables the control functions shutdown.

Enables activation/deactivation of the control functions only if the functions are unlocked.

Enables activation/deactivation of the control functions even if the functions are locked.

7. SIGNALS	
Errl	Sensor disconnected or damaged.
dEFr On	Manual activation of defrost process.
defr Off	Manual activation of end of defrost process.
RELO	Low temperature alarm.
REhi	High temperature alarm.
ALTE	Compressor reached maximum time on limit without reaching SP.
RUOL	Power outage alarm indication.
ROPA	Open door alarm indication.
OPEn	Open door indication.
1 n 1 b	Buzzer inhibited.
LOC 0n	Functions lockdown.
LOC OFF	Unlocking of functions.
OFF	Control functions off.
ECAL	Contact Full Gauge Controls.
PPPP	Reconfigure the values of the functions.

8. OPTIONAL ITEMS - Sold Separately

EasyProg - version 2 or higher

It is an accessory that has as its main function to store the parameters of the controllers. At any time, you can load new parameters of a controller and unload them on a production line (of the same controller), for example. It has three types of connections to load or unload the parameters:

- Serial RS-485: It connects via RS-485 network to the controller (only for controllers that have RS-485).
- USB: it can be connected to the computer via the USB port, using Sitrad's Recipe Editor.
- Serial TTL: The controller can be connected directly to **EasyProg** by the TTL Serial connection.

Ecase

It is recommended for the Evolution line, keeps water from entering the back part of the instrument. It also protects the product when the installation site is washed.

NOTE: Ecase is compatible with the use of small type Faston terminals, usually with silicone protection.

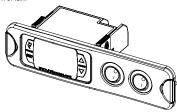

12. ANNEXES - Reference Images

Image V

Extension Frame

The Full Gauge Controls extension frame allows the installation of Evolution / Ri line with measures 76x34x77 mm (dimensions of the clipping for fixing in the extension frame is 71x29mm) in varied situations, since it eliminates precision cut to embed the instrument. Allows customization via a sticker with the brand and the company contact, and accompany two 10A (250 Vac) switches that can trigger internal light, air curtain, on / off system or fan.

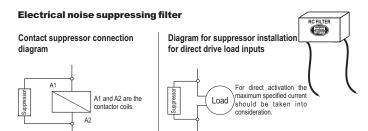
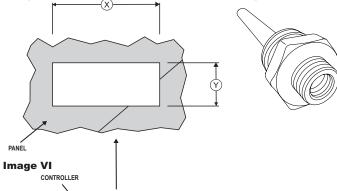
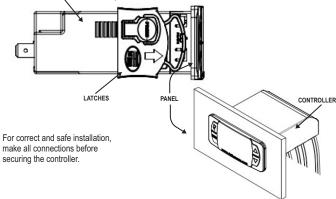
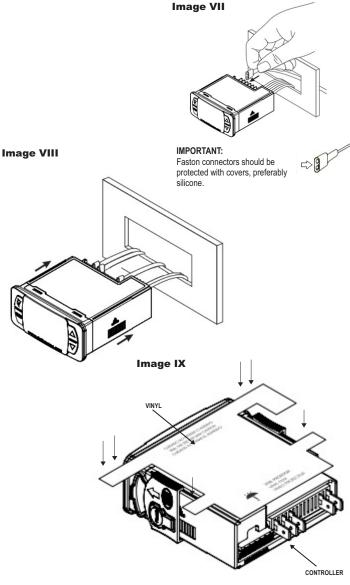





Image X

ENVIRONMENTAL INFORMATION

Packaging:

The materials used in the packaging of Full Gauge products are 100% recyclable. Try to perform disposal through specialized recyclers.

The components used in Full Gauge controllers can be recycled and reused if disassembled by specialized companies.

Do not incinerate or dispose the controllers that have reached the end of their service as household garbage. Observe the laws in your area regarding disposal of electronic waste. If in doubt, please contact Full Gauge Controls.

WARRANTY - FULL GAUGE CONTROLS

Products manufactured by Full Gauge Controls, as of May 2005, have a two (02) year warranty, as of the date of the consigned sale, as stated on the invoice. They are guaranteed against manufacturing defects that make them unsuitable or inadequate for their intended use.

EXCEPTIONS TO WARRANTY

The Warranty does not cover expenses incurred for freight and/or insurance when sending products with signs of defect or faulty functioning to an authorized provider of technical support services. The following events are not covered either: natural wear and tear of parts; external damage caused by falls or inadequate packaging of products.

LOSS OF WARRANTY

- Products will automatically lose its warranty in the following cases:
 The instructions for assembly and use found in the technical description and installation procedures in Standard IEC60364 are not obeyed;
- The product is submitted to conditions beyond the limits specified in its technical description;
- The product is violated or repaired by any person not a member of the technical team of Full Gauge Controls:
- Damage has been caused by a fall, blow and/or impact, infiltration of water, overload and/or atmospheric discharge.

USE OF WARRANTY

To make use of the warranty, customers must send the properly packaged product to Full Gauge Controls together with the invoice or receipt for the corresponding purchase. As much information as possible in relation to the issue detected must be sent to facilitate analysis, testing and execution of the service.

These procedures and any maintenance of the product may only be provided by Full Gauge Controls Technical Support services in the company's headquarters at Rua Júlio de Castilhos, 250 - CEP 92120-030 - Canoas - Rio Grande do Sul - Brasil