

TERMOSTATO DIFERENCIAL PARA AQUECIMENTO SOLAR

superaqueo

temperatura

de funções

de controle

EVOLUTION

1. DESCRIÇÃO

Termostato diferencial para aquecimento solar que comanda uma bomba de circulação de água através do diferencial de temperatura entre os coletores solares e o reservatório térmico ou piscinas

O Microsol E possui funções que garantem o rendimento do sistema de aquecimento, evitam o congelamento nos tubos durante o inverno e controlam o superaquecimento. Também possui um sistema inteligente de bloqueio de funções que impede que pessoas não autorizadas alterem os

2. RECOMENDAÇÕES DE SEGURANÇA

- Certifique-se da correta fixação do controlador
- Certifique-se de que a alimentação elétrica esteja desligada e que não seja ligada durante a instalação do controlador;
- Leia o presente manual antes de instalar e utilizar o controlador;
- Utilize Equipamentos de Proteção Individual (EPI) adequados;
- Para aplicação em locais sujeitos a respingos d'água, instale o vinil protetor que acompanha o
- Para proteção sob condições mais críticas, recomendamos a capa Ecase, que disponibilizamos como opcional (vendido separadamente);
- Os procedimentos de instalação devem ser realizados por um técnico capacitado.

3. APLICAÇÕES

Sistemas de aquecimento solar bombeados

4. ESPECIFICAÇÕES TÉCNICAS Microsol E:115 ou 230 Vac ±10%* (50/60 Hz) Alimentação Microsol EL:12 ou 24 Vdc ou Vac +10% 0.8 VA Consumo aproximado Temperatura de controle (**) -50 a 105°C (-58 a 221°F) Temperatura de operação 0 a 50 °C / 32 a 122°F Umidade de operação 10 a 90% UR (sem condensação) **NA** -16A / 2HP Corrente máxima da saída NF - 500W / 1/10HP Grau de proteção IP 65 (frontal) 76 x 34 x 77 mm (L x A x P) Dimensões (mm) Dimensões de recorte (mm) $X = 71\pm0.5$ $Y = 29\pm0.5$ (vide Imagem V)

(*) Variação admissível em relação a tensão nominal.

5. INDICAÇÕES E TECLAS

- (**) Este instrumento mede e controla temperaturas até 200°C/392°F, utilizando o cabo sensor de silicone SB59 (vendido separadamente).

 <u>\text{MPORTANTE:}</u> Somente os sensores 1 e 2 acompanham o produto, o sensor 3 pode ser adquirido separadamente.

Led de indicação do sensor 2 Led de indicação de bloqueio de funções Led de indicação de desligamento de funções de controle Led de indicação do sensor 1 Led de indicação da saída PUMP Led de indicação da unidade de temperatura Tecla de Menu 12 Έ Tecla Aumenta Facilitado (Flat (V Tecla Set SET Tecla Diminui

www.fullgauge.com

Filtro supressor de ruído elétrico (vendido separadamente)

Esquema de ligação de supressores em contatoras

A1 e A2 são os bornes da bobina da contatora

Esquema de ligação de supressores em cargas acionamento direto

Para acionamento direto leve em consideração a corrente máxima especificada.

- **6.2. Ligação do sensor de temperatura** Conecte os fios do **sensor S1** nos terminais "7 e 8" / **sensor S2** nos terminais "1 e 2" : a polaridade é indiferente, caso utilize sensor \$3, este deve ser ligado nos terminais "1 e 3"
- O comprimento dos cabos do sensor pode ser aumentado pelo próprio usuário para até 200 metros, utilizando um cabo PP 2x24 AWG.
- Para imersão em água utilize poço termométrico, disponível na linha de produtos Full Gauge Controls (vendido separadamente)

6.3. Alimentação elétrica do controlador

Utilize os pinos conforme a tabela abaixo, em função da versão do aparelho:

Pinos	Microsol E	Microsol EL
9 e 10	115 Vac	12 Vac/dc
9 e 11	230 Vac	24 Vac/dc

6.4. Recomendações das normas NBR5410 e IEC60364

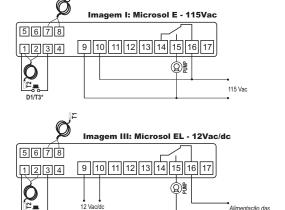
- a) Instale protetores contra sobretensão na alimentação do controlador
- b) Instale supressores de transientes filtro supressor (tipo RC) no circuito para aumentar a vida útil do relé do controlador.
- c) Os cabos do sensor podem estar juntos, porém não no mesmo eletroduto por onde passa a alimentação elétrica do controlador e/ou das cargas.

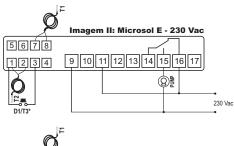
7. PROCEDIMENTO DE FIXAÇÃO

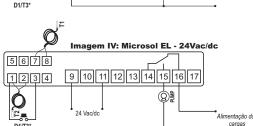
- a) Recorte a chapa do painel (Imagem V item 14) onde será fixado o controlador , com dimensões $X = 71 \pm 0.5 \text{ mm e Y} = 29 \pm 0.5 \text{ mm};$
- b) Remova as travas laterais (Imagem VI item 14): para isso, comprima a parte central elíptica (com o Logo Full Gauge Controls) e desloque as travas para trás;
- c) Introduza o controlador no recorte feito no painel, de fora para dentro;
- d) Recoloque as travas e desloque-as até comprimi-las contra o painel, fixando o controlador no alojamento (ver indicação da seta na Imagem VI - item 14);
- e) Faça a instalação elétrica conforme descrito no item 6;
- f) Aiuste os parâmetros conforme descrito no item 8.

ATENÇÃO: para instalações que necessitem de vedação contra líquidos, o recorte para instalação do controlador deve ser no máximo de 70,5x29mm. As travas laterais devem ser fixadas de modo que pressione a borracha de vedação evitando infiltração entre o recorte e o controlador.

Vinil protetor - Imagem VII (item 14)


Este vinil adesivo acompanha o instrumento, na embalagem.


<u>MPORTANTE:</u> Faça a aplicação somente após concluir as conexões elétricas.


- a) Recue as travas laterais (Imagem VI item 14);
- b) Remova a película protetora da face adesiva do vinil;
- c) Aplique o vinil sobre toda a parte superior, dobrando as abas, como indicado pelas setas Imagem VII (item 14);
- d) Reinstale as travas.
- OBS: O vinil é transparente, permitindo visualizar o esquema elétrico do instrumento.

6. ESQUEMA DE LIGAÇÃO

6.1. Conexões elétricas (Ver Imagens I a IV)

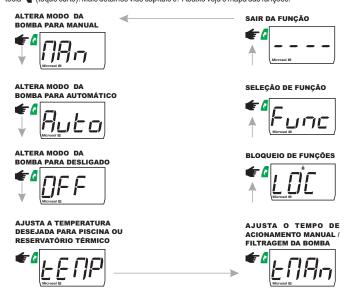
IDENTIFICAÇÃO DOS SENSORES:

T1: Coletores

T2: Reservatório/piscina

T3*: Superfície

△IMPORTANTE: Somente os sensores 1 e 2 acompanham o produto, o sensor 3* pode ser adquirido separadamente.


⚠ IMPORTANTE

OS INSTRUMENTOS DA LINHA EVOLUTION POSSUEM DOIS TAMANHOS DIFERENTES DE BORNES, MAS AMBOS SÃO COMPATÍVEIS COM A CHAVE DE FENDA 2.0mm. USE AS FERRAMENTAS ADEQUADAS DURANTE A INSTALAÇÃO E GARANTA MAIOR VIDA ÚTIL E O BOM FUNCIÓNAMENTO DOS **PRODUTOS**

8. AJUSTE DA TEMPERATURA DESEJADA E DOS PARÂMETROS

8.1. Mapa de Menu Facilitado

Para acessar ou navegar no menu facilitado utilize a tecla (toque curto) enquanto o controlador estiver exibindo a temperatura. A cada toque é exibida a próxima função da lista, para confirmar utilize a tecla (toque curto). Mais detalhes vide capítulo 9. Abaixo veja o mapa das funções:

8.2. Mapa de Teclas Facilitadas

Quando o controlador estiver em exibição de temperatura, as seguintes teclas servem de atalho para as funções:

SET	Toque curto: Ajusta a temperatura desejada da piscina ou reservatório térmico, confirmação de ajustes de funções.
	Toque curto: exibição dos registros de temperaturas mínimas e máximas.
	Pressionada 2 segundos: quando exibindo registros, limpa histórico.
	Toque curto: alterna a visualização de temperaturas momentaneamente.
C	Toque curto: Entra no menu facilitado.
	Pressionadas simultaneamente: acesso à seleção de funções.

9. OPERAÇÕES BÁSICAS

9.1 Ajustando temperatura de aquecimento da piscina / reservatório (T2) (TEMP):

Pressione a tecla (toque curto), aparecerá a mensagem [FRP]. Ao soltar a tecla aparecerá a temperatura de controle ajustada. Utilize as teclas ou para modificar o valor, e quando pronto, pressione para gravar. Ao atingir esta temperatura, a bomba de circulação de água é desligada, evitando o desconforto térmico. A temperatura desejada também pode ser alterada pelo menu facilitado, (ver mapa no item 8.1).

9.2 Visualizar outras medidas:

Neste modo de visualização, é possível visualizar outras medidas (se disponíveis) pressionando a tecla ou a tecla ou a tecla ou a tecla ou tecla ou

E 17 R n Tempo restante para sair do modo manual (se modo manual ativado)
E - / Temperatura no sensor 1
E - 2 Temperatura no sensor 2
E - 3 Temperatura no sensor 3
☐ F Temperatura diferencial (T1-T2)

A medida selecionada será exibida no display durante 60 segundos a após transcorrido o tempo a indicação preferencial volta a ser exibida (conforme ajustado no parâmetro [F [] 2]).

9.3 Bloqueio de funções

A utilização do bloqueio de funções traz maior segurança a operação do instrumento, com ele ativo os ajustes da temperatura desejada, tempo de acionamento manual e os demais parâmetros podem ficar visíveis ao usuário, mas protegidos contra alterações indevidas F25 = 2 ou pode-se bloquear as alterações nas funções de controle deixando os ajustes da temperatura desejada e tempo de acionamento manual liberados F25 = 1. Com a tecla (toque curto), acessa a função (£01 no menu facilitado, confirme pressionando (toque curto), então aparecerá a mensagem (na após mantenha pressionada a tecla pelo tempo configurado para bloqueio de funções F25), até aparecer (101 Ao soltar a tecla, exibirá a mensagem (101 n), indicando o bloqueio.

Para desbloquear, desligue o controlador e volte a ligá-lo com a tecla **v** pressionada. Mantenha a tecla pressionada até que a mensagem <u>[[] []]</u> apareça. Mantenha a tecla pressionada por 10 segundos e ao solta-lá, a mensagem <u>[] F F]</u> será exibida no display, indicando o desbloqueio.

9.4 Registro de Temperatura Mínima e Máxima

Nota: Se a tecla for pressionada durante a exibição dos registros, os valores serão reinicializados e a mensagem $\overline{F SEE}$ será exibida.

9.5 Seleção de unidade (°C / °F)

Nota: Sempre que a unidade for alterada, as configurações das funções assumem o valor de fábrica, precisando assim, serem novamente configuradas.

9.6 Modo de funcionamento da bomba d'agua:

Para alterar o modo de funcionamento da bomba d'agua utilize as opções [FF], [Buta e [BrF] do menu facilitado.

A bomba de circulação de água entre o coletor solar e a piscina ou reservatório térmico pode operar em três modos distintos. Segue descrição:

MAN = Bomba de circulação ligada.

Atenção: Neste modo a bomba é mantida ligada, ignorando as funções de proteção e os sensores de temperatura.

AUTO = Bomba de circulação em modo automático operando conforme configuração dos parâmetros.

OFF = Bomba de circulação sempre desligada.

Nota 1: O modo de funcionamento da bomba também pode ser alterado através da entrada digital, configurando a função FIY - Modo de funcionamento da entrada digital com a opção 1.

Nota 2: Em caso de falta de energia com o instrumento em modo MAN, o instrumento assume o modo AUTO ao reiniciar.

10. OPERAÇÕES AVANÇADAS

10.1. Ajuste dos parâmetros

Acesse a função FDI pressionando simultaneamente as teclas Cou pelo menu facilitado (item 8.1). Ao aparecer FDI, pressione a tecla (toque curto). Utilize as teclas Ou para entrar com o código de acesso FDI, equando pronto, pressione Utilize as teclas Ou para acessar a função desejada. Após selecionar a função, pressione a tecla (toque curto), para visualizar o valor configurado para aquela função. Utilize as teclas Ou para alterar o valor entrar ou para amemorizar o valor configurado e retornar ao menu de funções. Para sair do menu e retornar ao operação normal (indicação de temperatura) pressione (toque longo) até aparecer ————.

Obs. 2: 15 segundos após fornecer o código de acesso e/ou após configurar um parâmetro, não havendo toques nos botões, o controlador retorna para o modo operação e será necessário introduzir novamente o código de acesso na função FII.

10.2. Tabela de Parâmetros

10.2. Tabela de Parâmetros			CELSIUS (°C)			FAHRENHEIT			(°F)
Fun	Descrição	Mín	Máx	Unid	Padrão	Mín	Máx	Unid	Padrão
F 0 1	Código de acesso	0	999	-	0	0	999	-	0
	Indicação preferencial	1(t1)	4(t3)		2(t2)	1(t1)	4(t3)	-	2(t2)
F D 3	Diferencial (T1-T2) para ligar a bomba	-1,0	200	°C	8.0	-1	360	°F	14
FOY	Diferencial (T1-T2) para desligar a bomba	-1,0	200	°C	4.0	-1	360	°F	7
F 0 5	Temperatura de anticongelamento (T1) para	-18(off)	200	°C	8,0	0(off)	392	°F	46
	ligar a bomba	, ,			.,.	-(-,			
F 0 6	Temperatura de superaquecimento (T1) para	0,0	200	°C	90,0	32	392	°F	194
	desligar a bomba								
FOT	Temperatura de aquecimento da	0,0	200	°C	32,0	32	392	°F	89
	piscina/reservatório (T2) (TEMP)								
F 0 8	Tempo máximo de bomba ligada em	1	999	min.	360	1	999	min.	360
	modo manual								
F 0 9	Função tubo a vácuo	0(off)	1(on)		0(off)	0(off)	1(on)	-	0(off)
F 10	Tempo de bomba ligada na função	10	999	seg.	20	10	999	seg.	20
	tubo a vácuo								
F 1 1	Tempo de bomba desligada na função	1	999	min.	30	1	999	min.	30
	tubo a vácuo								
F 12	Temperatura mínima (T1) para ligar a	0,0	200	°C	20,0	32	392	°F	68
	bomba na função tubo a vácuo								
F 13	Diferencial máximo (T1-T2) para proteção contra	0,1	200	°C	50,0	1	360	°F	90
	choque térmico na função tubo a vácuo								
F 14	Modo de funcionamento da entrada digital	0(off)	4	-	1	0(off)	4	-	1
F 15	Temperatura de superaquecimento (T3)	0,0	200.1(off)	°C	200.1(off)	32	392(off)	°F	392(off)
	para desligar a bomba				<u> </u>				. 1
F 16	Resfriamento	0(off)	1(on)	-	0(off)	0(off)	1(on)		0(off)
F 17	Histerese da temperatura de superaquecimento	0,1	5,0	°C	1,0	1	9	°F	1
	do sensor T2								
F 18	Histerese da temperatura de superaquecimento	0,1	5,0	°C	1,0	1	9	°F	1
	do sensor T3								
F 19	Deslocamento de indicação (Offset) do	-20,0	20,0	°C	0,0	-36	36	°F	0
	sensor T1								
F20	Deslocamento de indicação (Offset) do	-20,0	20,0	°C	0,0	-36	36	°F	0
	sensor T2								
F21	Deslocamento de indicação (Offset) do	-20,0	20,0	°C	0,0	-36	36	°F	0
	sensor T3								
F22	Atrelamento do sensor T3 ao modo automático	0(no)	1(yes)	-	0(no)	0(no)	1(yes)	-	0(no)
F23	Temperatura mínima em T1 para acionar	-50(off)	200,0	°C	-50(off)	-58(off)	392	°F	-58(off)
	a bomba					'			
F 2 4	Retardo na energização do instrumento (delay)	0(no)	999	seg.	0(no)	0(no)	999	seg.	0(no)
F 25	Modo de bloqueio de funções	0	2	-	0	0	2	-	0
F26	Tempo de bloqueio das funções	15	60	seg.	15	15	60	seg.	15

10.2.1. Descrição dos parâmetros

F01 - Código de Acesso:

O Microsol ≡ possui 2 códigos de acesso distintos:

123 Permite alterar os parâmetros avançados.

Permite escolher a unidade de temperatura: Celsius ou Fahrenheit.

F02 - Indicação preferencial:

Esta função permite que seja configurada a indicação de temperatura preferencial. Pode-se escolher

Exibe a temperatura do sensor 1

Exibe a temperatura do sensor 2

Exibe a temperatura diferencial (T1-T2)

Exibe a temperatura do sensor 3 (se habilitado)

Ao exibir a temperatura diferencial (T1-T2), os dois LED's relativos a estes sensores ficam ligados.

F03 - Diferença de temperatura (T1-T2) para ligar a bomba:

À medida que os coletores solares recebem energia, a temperatura no sensor 1 aumenta. Quando esta temperatura estiver a um valor determinável acima da temperatura do sensor 2, a bomba é ligada e circula para baixo a água aquecida, armazenando-a no reservatório, por exemplo.

F04 - Diferença de temperatura (T1-T2) para desligar a bomba:

Permite configurar com quantos graus de diferença entre o sensor 1 e o sensor 2 o Microsol ■ desligará a bomba de circulação de água.

Exemplo:

F [] 4] = 8.0 F [] 4] = 4.0

Quando o sensor 1 (placa) estiver com 35°C e o sensor 2 (reservatório ou piscina) estiver com 23°C, a diferença será de 12°C. Logo, a bomba de circulação estará ligada (35-23 = 12 maior que 8). Com a bomba ligada, a água quente circula para baixo e a fria para cima. Logo, a diferenca de temperatura entre 1 e 2 tende a diminuir. Então, quando esta diferença entre o sensor 1 e o sensor 2 alcançar 4ºC (função F 03), a bomba de circulação será desligada (35-31 = 4).

MPORTANTE: O valor ajustado na função F□∃ deve ser, obrigatoriamente, maior que o ajustado na função <u>F 🗓 4</u>]. Assim sendo, o **Microsol ≡** não permite que sejam feitos ajustes inválidos afim de garantir o seu perfeito funcionamento.

Ex.: Configuração atual:

F □ 3 : 10.0°C *F □ Y* : 5.0°C

Você deseja alterar para:

F □ 3 : 4.0°C F □ 4 : 2.0°C

Primeiramente ajuste F [] 4] para 2.0°C, e logo após ajuste F [] 3] para 4.0°C.

F05 - Temperatura anticongelamento (sensor 1) para ligar a bomba:

Quando a temperatura nos coletores (sensor 1) estiver muito baixa (Ex.: noites de inverno), a bomba é ligada, para impedir que a água congele nos canos e danifique os mesmos. A histerese é fixa em 2°C (4º F). O tempo mínimo de bomba ligada é de 3 minutos. Enquanto a bomba estiver ligada devido ao anticongelamento, a mensagem I E e é alternada com a indicação preferencial de temperatura. Esta função pode ser desligada ajustando-a no valor mínimo [] F F

F06 - Temperatura de superaquecimento (sensor 1) para desligar a bomba:

Quando a temperatura nos coletores (sensor 1) estiver acima de um valor determinável, a bomba é desligada para impedir que a água superaquecida circule pelos canos e os danifique (caso canos de PVC sejam usados). A histerese é fixa em 2°C (4° F). Quando for detectado o superaquecimento no sensor 1, a mensagem [HE] é alternada com a indicação preferencial de temperatura.

F07 - Temperatura de aquecimento da piscina/reservatório (T2) (TEMP):

Define a temperatura de conforto da piscina ou reservatório térmico (T2). Ao atingir esta temperatura, a bomba de circulação de água é desligada, evitando o desconforto térmico. A histerese pode ser ajustada desde 0.1 até 5.0 °C (ver função FT). Quando for detectado o aquecimento no sensor T2, a mensagem [H & 2] é alternada com a indicação preferencial de temperatura.

F08 - Tempo máximo de bomba ligada em modo manual:

É o tempo que a bomba permanecerá ligada em modo manual Após este período, o controlador assume o modo AUTO (AUTOMÁTICO).

F09 - Função tubo a vácuo: Caso habilitada esta função, o controlador aciona a bomba pelo tempo definido em FID e mantém a bomba desligada pelo tempo definido em F]]. Para efetuar este controle, a temperatura do coletor (T1) deve ser superior ao valor ajustado em F]] e respeitar o diferencial máximo F]].

Há modelos de coletores de tubo a vácuo que não permitem a medida direta de temperatura do coletor, pois não dispõem de previsão para sensores de imersão. Para uma correta medida da temperatura da água na saída do coletor é necessário que ocorra um mínimo de fluxo de água. Para isso o circuito solar deve ativar a bomba, em intervalos regulares de modo que a água aquecida do coletor chegue ao sensor

Obs.: o controlador prioriza as configurações de proteção (sobreaquecimento), ignorando a função do tubo a vácuo, quando da ocorrência destas.

F10 - Tempo de bomba ligada na função tubo a vácuo:

É o tempo que a bomba permanecerá ligada com a função tubo a vácuo ativa.

F11 - Tempo de bomba desligada na função tubo a vácuo:

É o tempo que a bomba permanecerá desligada com a função tubo a vácuo ativa.

F12 - Temperatura mínima (T1) para ligar a bomba na função tubo a vácuo:

É a temperatura mínima (T1) permitida para ativar a função tubo a vácuo.

F13 - Diferencial máximo (T1-T2) para proteção contra choque térmico na função tubo a vácuo:

É a diferença de temperatura entre T1 e T2 máxima permitida para ligar a bomba de circulação. Quando habilitada a função de tubo a vácuo, é ativada a proteção contra choque térmico, que evita ligar a bomba de circulação quando a temperatura do coletor for muito maior que o reservatório. Se o diferencial for maior que o valor configurado nesta função, será gerado o alarme visual [R + u +] .

F14 - Modo de funcionamento da entrada digital:

댁 - Sensor de temperatura (T3).

DFF - Entrada digital desabilitada;
] - Pulsador NO: Altera modo de funcionamento da bomba;
- Contato NO: Habilita funcionamento da bomba;
3 - Contato NC: Habilita funcionamento da bomba:

F15-Temperatura de superaquecimento (T3) para desligar a bomba:

Quando a temperatura no sensor 3 atingir um valor configurado, a bomba é desligada para evitar desconforto térmico. Esta função é usada em sistemas de aquecimento de piscinas que utilizam o terceiro sensor para medir a temperatura na superfície. A histerese pode ser ajustada desde 0,1 até 5,0°C (ver função F 18). Quando for detectado o superaquecimento no sensor 3, a mensagem 田上子 é alternada com a indicação preferencial de temperatura. Esta função pode ser desligada ajustando-a no valor máximo [] F F , assim como no sensor 3 também é desabilitado.

F16-Resfriamento:

Tem por finalidade resfriar a piscina/reservatório térmico durante a noite sempre que a temperatura de aquecimento (parâmetro $\boxed{F1}$) ou $\boxed{F15}$ for ultrapassada e a diferença entre o coletor (T1) e o sensor de referência (T2 ou T3) atingir -4,0°C/-7°F (fixo).

A bomba então é ligada, utilizando o coletor como radiador para resfriar a água da piscina. Quando o diferencial (T1-T2) baixar de -2,0°C / -4°F (fixo) ou a temperatura no sensor de referência (T2 ou T3) baixar da temperatura de aquecimento (parâmetro F 17) ou F 15 a bomba será desligada.

Nota: Com o sensor T3 habilitado o parâmetro de aquecimento será F 15 e o sensor de referência será T3. Caso contrário, o parâmetro de aquecimento será F777 e o sensor de referência será T2.

F17 - Histerese da temperatura de superaquecimento do sensor T2:

F18 - Histerese da temperatura de superaquecimento do sensor T3:

Caso a bomba seja desligada por superaquecimento no sensor 2 ou sensor 3, através desta função pode-se definir um intervalo de temperatura dentro do qual a bomba permanecerá desligada.

F19 - Deslocamento de indicação (Offset) do sensor T1:

F20 - Deslocamento de indicação (Offset) do sensor T2:

F21 - Deslocamento de indicação (Offset) do sensor T3:

Permite compensar eventuais desvios na leitura da temperatura, proveniente da troca do sensor ou alteração no comprimento do cabo.

F22 - Atrelamento do sensor T3 ao modo automático:

ு - Bomba de circulação operando em modo automático não atrelado ao sensor 3. Neste modo
acionamento da bomba se dará somente pelo diferencial de temperatura (T1-T2).

 YES
 - Bomba de circulação operando em modo automático atrelado ao sensor 3. Neste modo o
 acionamento da bomba se dará pelo diferencial de temperatura e quando a temperatura do sensor 1 for major que a do sensor 3.

Nota: Se o valor desta função for [4] E 5 , e se desabilitado o sensor 3 o valor desta função retorna para 🕝 o

F23 - Temperatura mínima no sensor 1 para acionar a bomba:

Evita que a bomba de circulação seja ligada com a temperatura na placa (coletor) menor que a desejada, evitando, assim, a circulação de água morna ou fria pelo sistema, o que acarretaria um maior consumo de energia

Exemplo: Se nas placas está marcando 27°C e na piscina 28°C não é necessário acionar a bomba de circulação. Esta função pode ser desligada ajustando-a no valor mínimo [] F F

Nota 1: Esta função tem prioridade sobre as demais funções para acionamento da bomba exceto, pelo acionamento manual da bomba.

Nota 2: Com a função de tubo à vácuo habilitada, esta função é ignorada.

F24 - Retardo na energização do instrumento (delay):

Com essa função habilitada, quando o instrumento é energizado ele funciona apenas como indicador de temperatura permanecendo com a saída desligada durante o tempo definido. Em instalações com vários equipamentos, configurando valores diferentes para o tempo de retardo na partida de cada instrumento, é possível evitar picos de demanda ao fazer com que as cargas sejam acionadas em tempos diferentes. Esta função pode ser desligada ajustando-a no valor mínimo 0 🕝 a

F25 - Modo de bloqueio de funções:

Permite e configura o bloqueio de funções

Não permite bloqueio de funções;

Permite o bloqueio parcial, onde as funções de controle serão bloqueadas mas os ajustes de temperatura desejada [FETIP] e tempo de acionamento manual [FTIR] permanecerão liberados;

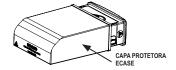
Permite o bloqueio total.

F26 - Tempo para bloqueio de funções:Permite o bloqueio das funções de controle (ver item 9.3).

15 - 60 - Define o tempo em segundos do comando para ativar.

11. SINALIZAÇÕES NO DISPLAY

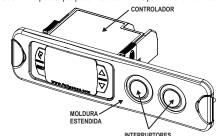
Err /	Sensor 1 desconectado ou danificado.
Err2	Sensor 2 desconectado ou danificado.
Err3	Sensor 3 desconectado ou danificado.
HEI	Superaquecimento no sensor 1.
HE2	Superaquecimento no sensor 2.
H	Superaquecimento no sensor 3.
Q Led Piscante	Bomba ligada manualmente.
Q Led Ligado	Bomba ligada automaticamente.
U Led Piscante	Bomba desligada pela entrada digital (<u> </u>
U Led Ligado	Bomba em modo OFF.
I E E	Bomba ligada devido à função de anticongelamento.
ALUB	Indica que o diferencial máximo (S1-S2) para a proteção contra choque térmico na função tubo de vácuo foi ultrapassado.
LOC 0n	Bloqueio de funções ativado.
LOC OFF	Bloqueio de funções desativado.
ECAL	Entrar em contato com a Full Gauge Controls.
PPPP	Reconfigurar os valores das funções.


12. GLOSSÁRIO DE SIGLAS

- °C: Temperatura em graus Celsius.
- -°F: Temperatura em graus Fahrenheit.
- Auto: Automático.
- LOC: Bloqueado.
- **No:** Não.
- OFF: Desligado/desativado.
- ON: Ligado ativado
- SET do inglês "Setting" (ajuste ou configuração).
- Vac: Tensão elétrica (volts) de corrente alternada.
- Vdc: Tensão elétrica (volts) de corrente contínua.
- Yes: Sim.

13. ITENS OPCIONAIS - Vendido Separadamente

Capa protetora Ecase

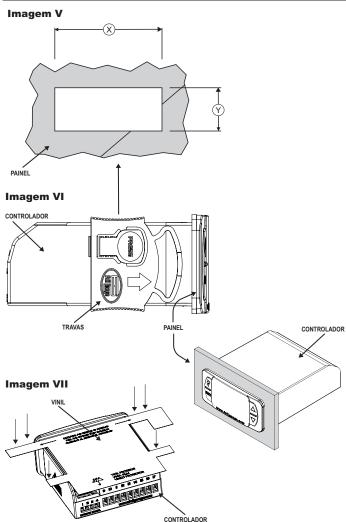

Recomendado para a linha Evolution, previne a entrada de água na parte traseira do instrumento. Protege o produto quando for efetuada a lavagem do local da instalação.

Moldura estendida

Possibilita a instalação de controladores da linha Evolution com medidas de 76 x 34 x 77 mm em variadas situações, pois dispensa precisão no recorte do painel de encaixe do instrumento.

A moldura integra dois interruptores de 10 Ampères que podem ser utilizados para acionar luz interna, cortina de ar, ventilador e outros.

EasyProg - versão 2 ou superior


É um acessório que tem como principal função armazenar os parâmetros dos controladores. A qualquer momento pode carregar novos parâmetros de um controlador, e descarregar em uma linha de produção

(do mesmo controlador), por exemplo. Possui três tipos de conexões para carregar ou descarregar os parâmetros:

- Serial RS-485: Conecta-se via rede RS-485 ao controlador (somente para os controladores que possuem RS-485).
- USB: Se conecta ao computador pela porta USB, utilizando o Editor de Receitas do Sitrad.
- Serial TTL: O controlador pode se conecta diretamente à EasyProg pela conexão Serial TTL

14. ANEXOS - Imagens de Referência

INFORMAÇÕES AMBIENTAIS

Embalagem:

Os materiais utilizados nas embalagens dos produtos Full Gauge são 100% recicláveis. Procure fazer o descarte através de agentes recicladores especializados

Produto:

Os componentes utilizados nos controladores Full Gauge podem ser reciclados e reaproveitados se forem desmontados por empresas especializadas.

Não queime nem jogue em lixo doméstico os controladores que atingirem o fim de sua vida útil. Observe a legislação existente em sua região com relação à destinação de resíduos eletrônicos. Em caso de dúvidas entre em contato com a Full Gauge Controls.

Os produtos fabricados pela Full Gauge Controls, a partir de maio de 2005, têm prazo de garantia de 10 (dez) anos diretamente com a fábrica e de 01 (um) ano junto às revendas credenciadas, contados a partir da data da venda consignada que consta na nota fiscal. Após esse ano junto às revendas, a garantia continuará sendo executada se o instrumento for enviado diretamente à Full Gauge Controls. Os produtos estão garantidos em caso de falha de fabricação que os torne impróprios ou inadequados às aplicações para aos quais se destinam. A garantia se limita à manutenção dos instrumentos fabricados pela Full Gauge Controls, desconsiderando outros tipos de despesas, como indenização em virtude dos danos causados em outros equipamentos.

EXCEÇÕES À GARANTIA

A Garantia não cobre despesas de transporte e/ou seguro para o envio dos produtos com indícios de defeito ou mau funcionamento à Assistência Técnica. Não estão cobertos, também, os seguintes eventos: desgaste natural das peças, danos externos causados por quedas ou acondicionamento inadequado dos produtos.

PERDA DA GARANTIA

O produto perderá a garantia, automaticam

- Não forem observadas as instruções de utilização e montagem contidas no descritivo técnico e os procedimentos de instalação presentes na Norma NBR5410;
 - For submetido a condições além dos limites especificados em seu descritivo técnico;
- Sofrer violação ou for consertado por pessoa que não faça parte da equipe técnica da Full Gauge;
- Os danos ocorridos forem causados por queda, golpe e/ou impacto, infiltração de água, sobrecarga e/ou descarga atmosférica.

UTILIZAÇÃO DA GARANTIA

Para usufruir da garantia, o cliente deverá enviar o produto devidamente acondicionado, juntamente com a Nota Fiscal de compra correspondente, para a Full Gauge Controls. O frete de envio dos produtos é por conta do cliente. É necessário, também, remeter a maior quantidade possível de informações referentes ao defeito detectado, possibilitando, assim, agilizar a análise, os testes e a execução do serviço.

Esses processos e a eventual manutenção do produto somente serão realizados pela Assistência Técnica da Full Gauge Controls, na sede da Empresa - Rua Júlio de Castilhos, 250 - CEP 92120-030 - Canoas - Rio Grande do Sul – Brasil.

© Copyright 2020 • Full Gauge Controls ® • Todos os direitos reservados.